DOI QR코드

DOI QR Code

THE CONDITIONS FOR REPELLING THE AUTOMORPHISM ORBIT FROM THE BOUNDARY POINT

  • Byun, Ji-Soo (Department of Mathematics Seoul National University)
  • Published : 2003.07.01

Abstract

In this paper, we first prove that there are no automorphism orbits accumulating at a boundary point of the largest isolated finite type. We also present a generalization of the results of Isaev and Krantz on the structure of the orbit accumulation points.

Keywords

References

  1. Math. USSR Sbornik v.63 Domains in C² with non compact holomorphic automorphism group E.Bedford;S.Pinchuk https://doi.org/10.1070/SM1989v063n01ABEH003264
  2. Russian Acad. Sci. Sb. Math. v.82 Convex domains with noncompact groups of automorphisms E.Bedford https://doi.org/10.1070/SM1995v082n01ABEH003550
  3. Internat. J. Math. v.5 Characterization of models in C² by their automorphism groups F.Berteloot https://doi.org/10.1142/S0129167X94000322
  4. Kreis un Kugel W.Blaschke
  5. J. Geom. Anal. v.2 On the equality of line type and variety type of real hypersurfaces in Cⁿ H.Boas;E.Straube https://doi.org/10.1007/BF02921382
  6. Michigan Math. J. On the boundary accumulation points for the holomorphic automorphism groups J.Byun
  7. Ann. of Math. v.120 Boundary invariants of pseudoconvex domains D.W.Catlin https://doi.org/10.2307/1971087
  8. Complex Analysis in modern mathematics Holomorphic equivalence problem for weighted homogeneous rigid domains in $C^{n+1}$ B.Coupet;S.Pinchuk
  9. Ann. Math. v.115 Real hypersurfaces, orders of contact, and applications J.P.D'Angelo https://doi.org/10.2307/2007015
  10. Math. Res. Lett. v.3 Reinhardt domains with noncompact automorphism groups S.Fu;A.V.Isaev;S.G.Krantz https://doi.org/10.4310/MRL.1996.v3.n1.a11
  11. Michigan Math. J. v.44 no.2 Characterization of convex domains with noncompact automorphism group H.Gaussier https://doi.org/10.1307/mmj/1029005712
  12. Models for convex domins H.Gaussier
  13. Mengenlehre F.Hausdorff
  14. Michigan Math. J. v.43 On the boundary orbit accumulation set for domain with noncompact automorphism group A.V.Isaev;S.G.Krantz https://doi.org/10.1307/mmj/1029005546
  15. Math. Ann. v.292 Domains in Cⁿ with a piecewise Levi flat boundary which possess a noncompact automorphism group K.T.Kim https://doi.org/10.1007/BF01444637
  16. J. Differential Geom. v.6 Boundary behavior of $\overline(\partial)$on weakly pseudoconvex manifolds of dimension two J.J.Kohn https://doi.org/10.4310/jdg/1214430641
  17. Monografje Matematycsne v.3 Topologie Ⅰ C.Kuratowski
  18. J. Funct. Anal. v.108 Convex domains of finite type J.D.McNeal https://doi.org/10.1016/0022-1236(92)90029-I
  19. Adv. Math. v.109 Estimates on the Bergamn kernels of convex domains J.D.McNeal https://doi.org/10.1006/aima.1994.1082
  20. Asterisque v.217 On the automorphism group of certain hyperbolic domains in C² K.Oeljeklaus
  21. Bull. Amer. Math. Soc. v.46 On the completeness of a certain metric space with an application to Blaschke's Selection Theorem G.B.Price https://doi.org/10.1090/S0002-9904-1940-07195-2
  22. Ann. Inst. Four. Grenoble v.29 Sur une caracterisation de la boule parmi les domaines de Cⁿ par son groupe d'automorphismes J.P.Rosay https://doi.org/10.5802/aif.768
  23. Invent. Math. v.41 Characterization of the unit ball in Cⁿ by its automorphism group B.Wong https://doi.org/10.1007/BF01403050
  24. Indiana Univ. Math. J. v.43 Peak functions on weakly pseudoconvex domains J.Yu https://doi.org/10.1512/iumj.1994.43.43055