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THE FORMULA FOR THE
SINGULARITY OF SZEGO KERNEL : I

MASATAKE KURANISHI

ABSTRACT. We develop a method of calculating explicitly the sin-
gularity of Szegd and Bergman kernel by using the process devel-
oped by Boutet de Monvel and Sjéstrand.

The Bergman kernel and the Szegb kernel are important invariants
attached to complex domains. The global aspect of the kernels is difficult
to grasp, but their singularity is a local invariant and we can handle it
to some extent.

We consider a strongly pseudoconvex hypersurface M to be the boun-
dary of 2 C C™, where Q is open. Fefferman [8] found the formula for
the Bergman kernel of Q. Boutet de Monvel and Sjéstrand {6] noted
that the similar formula holds also for the Szego kernel K near M.

To write down the formula denote by z (resp. z) the standard real
chart (resp. complex chart) of C". Let 7 = 0 be one of the defining
equations of M such that » > 0 on Q. Denote by r(z,z') a function
on Q x Q satisfying the conditions: (i) r(z,z) = r(z), (i) 0,r(x,z’)
is zero up to of order co at z = &/, (iii) r(z,2’) = r(2/,z). Then the
formula for the Szego kernel of €2 is

(1) K3(z,2') = F(z,2')(r(z,2')) ™™ + G(z,z) log r(x, z').

The above three also developed methods to calculate the singularity of
the kernels. The program of Fefferman ([9], [10]) was developed by Bai-
ley, Eastwood, Gover, Graham, and others ([1], 2], [7], [12], [13], [14]). It
was completed by Hirachi and Komatsu ([17], [18]) by using Kashiwara
approach [21] based on Sato’s hyperfunctions. Kashiwara approach was
also used by Boutet of Monvel ([4], [5]) and Hirachi-Komatsu-Nakazawa
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([19], [20]) for calculation of the singularity. Boutet de Monvel and
Sjostrand [6] used Hormander’s Fourier integral operators.

The kernel is a global object. However, its singularity at a point is
determined locally. Therefore, we fix a reference point, say p., in M,
and try to write down explicitly the formula for the singularity near p.
using the local data. In this enterprise we follow the method developed
by Boutet de Monvel and Sjostrand. In this calculation we ignore the
CR or the conformal geometric aspect of the formula for the singularity.
At present the formula is crude. It will be refined and the geometric
formula will be developed in the subsequent papers.

It is hoped that the singularity furnishes new invariants when ap-
plied to the unit ball bundles of hermitian vector bundles, or isolated
singularities.

In §1 we give the outline of the construction. In §2 we write down the
equations which characterize the functions we need in the construction.
In §3 we develop the method to solve the equations given in §2. In §4
we summarize our construction.

§1. The outline

A) We consider C™*! instead of C"™. We choose the origin as our
reference point p, and consider a small piece of strongly pseudoconvex
hypersurface, say M, containing p,. Since we are interested in the local
aspect, we may shrink M.

We have the standard chart (z,w) of C"" = C™ x C where w =
20 + 509 with real z°,v°. A 8, operator is a vector field on M which is
of type (0,1) when it is written using the complex chart (z,w) of the
ambiant space. Let 7 = 0 be a local equation of M in C™*'. By making
a holomorphic linear change of our chart if necessary, we may assume
Tw # 0 at p,. Then the §, operators of M are generated by

o _ 0 o 0 o Ta
(1) Q —87 ih a'%, ih ——Tu_)
(¢ =1,...,n), where r5 = 0r/02%,rg = Or/0w.
In the following we always consider the case
(2) .
r= ;(w — @) — (J2|2 + N(2,2%)), where N =0 (mod (z,z1%%).
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Hence the restriction of (z,2°) to M is a chart of M, and we see by
calculation that its 0, operators are generated by

9
020’

P .
3) Q°=—= - 2 pe h% = z“ 4 higher order (a=1,...,n).
0z 2
When N = 0, it is the model case. Namely, it is the homogeneous
space M, i.e. the Heisenberg space. Therefore 0, operators for M are

generated by

0 i, 0
922 2° Ba0

We may regard the CR structures M and M are defined on the
same neighborhood, say M, of the origin, which we still denote by p,, in
C™ x R with the standard chart (z,z°). We have the standard real chart
= (Cﬂl, s :m2n)$0)7 2% =z% + iz™t*. Let (.’L',f),g = (517 v 75217,75())
be the standard real chart of the cotangent bundle 7*(C™ x R) induced
by the chart z.

For later discussion it is more convenient to introduce a copy y of z,
and counsider P° (resp. Q%) operating on z-space (resp. y-space). We
also introduce a copy 7 of £ so that 7 is the fiber chart of the cotangent
bundle of y-space. Both z and y represent points in the space M.

" Set (o = (€a — %n+a)/2. The copy of (* induced by 7 will be written
as (*(n). Then the symbols of @ and P® are given by

) P =

— 1 o — 1,
®)  ¢*(y,m) = iCa(n) + 5h%(W)no, P*(2,€) = ila + 52%0.
We may omit y in h(y), when there is no possibility of confusion. Set

N 1 ) N PN - R
(6) g(y,n)—%——%———2h, f(a;,g)_i&)_§O :

We have conic neighborhoods

o

(M) ={(z,8) 1z € M, |£*| < 8}, TY;(M)

(7)
={ly,m:yeM, |g7] <o}
of the characteristics at p, of 0, operators.

B) Let  be a bounded domain in C™*! with smooth strongly pseu-
doconvex boundary 052. Denote by H the Ls-closure of the space of
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the restrictions of the holomorphic functions on 2. We define the Szegd
projection operator as the orthogonal projection operator of Lo to H.

We construct a Fourier integral operator § : CO(M') — C°(M)
(for a small neighborhood M’ of p,) such that, in the case M is regarded
as an open subset of {2 as above, it differs from the restriction to C§°(M")
of the Szegd projection operator of 92 by an operator of order —oco. If
this is the case, we say that S has the same singularity as the Szegd
projection near p,. The construction of such § is done by the following
steps:

I) we say that a symplectic map x(z, &) = (y(z, &), n(z, £)) is homoge-
neous, when the domain of definition is a cone, and y(z, §) (resp. 7(z, §))
is homogeneous of degree 0 (resp. of degree -1) in .

We construct a homogeneous symplectic map

(8) X+ TR (M) — T3 (M),

for suitable 41, d2 > 0, which transforms the module generated by ¢* to
the module generated by p*. Namely, x is such that

9) ¢“(x(x,€)) = 5 (2,61 (2,€)

for a suitable symbol rg(m,f) of order zero. We have the graph G, a
subspace of (z,£&,y,n)-space, of x. We construct x in such a way that
(y,£) is a chart of G,

IT) for each symbol a(y,&) defined on the range of the above chart
(y,€) we construct the Fourier integral operator FX with the symbol a
induced by ¥,

IIT) we construct a symbol a(y,£) such that FX is unitary up to an
operator of order —co and such that, with a suitable matrix (Bg) of
pseudo-differential operators,

(10) FXoBjoPP=Q"cFX

modulo operators of order —oco (when restricted on a small neighborhood
Of y2 )7

IV) S = FX 180 f2(FX)*, where Sy is the Szegd projection operator of
M and fi, fo are cup-off functions, i.e. smooth functions with compact
support which is equal to 1 on a neighborhood of p,,

V) finally we write down the singularity of S by applying “the method
of stationary phase for complex phase functions” [22] to S.
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C) Our idea is to use an one-parameter family M; of CR structures
with the conditions: My = M, My = M, and, for ¢t # 0, M, is isomor-
phic to M restricted to a neighborhood of p.. Namely, under the chart
(2¢,2?) = (tz,t220)

1,0 ) 0 1

11 (1:__—__(1_ a:—hat t20.
(11) Q t(azg‘ B tax?)a hi t (tz,t°z")
Therefore the CR structure, say M;, generated by

0 i 0
12 a_ 9 _lpa
(12) @ 029 2h]t 0x0

is isomorphic to M and, because of the formula in (3) in §1, h$* extends
smoothly to ¢t = 0 and hg§ = 2°.

We also construct r = r(z, ') in (1) in Introduction for M; depending
smoothly in t. The Szeg6 kernel S; = Fyr; " +Gy log r: depends smoothly
on t. Actually we calculate their restriction to M x M. The advantage
of using M; is that we may use differential equations in ¢, x to construct
functions we need. For simplicity of notations we often omit ¢.

§2. The equations which appears in the construction

A) We first construct a one parameter family of symplectic maps x;
mentioned in (I) in §1. We do this by writing down the equation which
must be satisfied by x:.

For any one parameter family of transformations f;, with fo = the
identity map, we associate a one parameter family of infinitesimal trans-
formations v, by

(1) fiye 0 (ft)~L = the identity map +ev;  (mod €?).

We say that v; is associated to f;, vice versa. When we have a one-
parameter family v; we get back f; by solving the ordinary differential
equation:
dfy g
(2) i (vt at f;), fo = the identity map.
Therefore to construct x;: it is enough to construct the associated
one-parameter family v; of infinitesimal symplectic transformations, say

. ) )
= ‘7 —_ >
(3) ve(y,n) = v (y,m,t) oz, +v;(y,n,t) o
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It is well known that v; as above is an infinitesimal symplectic transfor-
mation if and only if there is a real valued function A:(y,n) such that

- o\

(4) Uj(yﬂ?,t)=g—2;7 Uj(y,"],t):—a—?;-
We call the function A; a potential for v;, also for the associated x;.
Therefore it is enough to find a potential \; for x; so that the associated
Xt satisfies the condition (9) in §1. Since we want x to be homogeneous,
we need A which is homogeneous of degree 1.

B) We have the symbol ¢*(y,n) of Q§. Assume that a one-parameter
family of symplectic maps x: is given. Let \; be its potential. We then
find easily

®) E0e@) _ (g2, 0} + i) Gunle, ),

where ¥ = dh¢/dt and {¢,} is the Poisson bracket of ¢ and . As
for the right-hand side of (9) in §1, assume that x; and a non-singular
matrix valued function r; = (r§(z,£)) are given. Define a matrix valued
function s; = (s3(y,7n)) by

(6) di“c(;:’_g) = Sz(x(%f))rg(m,f)-

Then, when (9) in §1 is satisfied, we find that

dré(z, )pP(z,
@ BERT0E) _ son(e, )0 (xie. )

Therefore we find the following:

THEOREM 1. Assume that a one parameter family of symplectic maps
X¢ as in § 1-(8) (with xo = the identity map) of potential \; satisfies the
equality (9) in §1. Then for a suitable matrix valued function s, =

(s3(y,m)) we have
(8) {g*, A} + ¢~ =53 ¢°.

Tracing back the above argument we find the following:

THEOREM 2. Let a real valued \; = A(y,7n) and a complex valued
st = (s3(y,n)) satisfy the above equation (8) on IY,(M). Consider
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v, v; given in (4). Let x4(z,€) = (y(z,€),n(z, &)) be the solution of the
equation:

© PO i), B <y (), n(,6)

with y(z,€) = z, n(z,€) =& whent =0. Then x; is a symplectic map.

Define r§(x,£) as the solution of the equation:

(10)
drg(z,€)

= 2 (y(2,€), (e, )} (2,€), (€)= 6 whent = 0.

Then for sufficiently small 5, and M’ we have the equality
(11) ¢*(y(z,€),n(z,€)) = r§(z,€)p° (z, ),
on Ff\lA(M "). We thus reduced the problem of constructing our x to the

problem of finding the solution of the equation (8).

C) A real valued function S(y, &) is called a generating function of

a symplectic map x(z,&) = (y(z,€),n(z,§)), when (z,£,y,7) is in the
graph of x if and only if

(12) &L= Sé(y,ﬁ), n= S;(y’S)

We see easily that a generating function exists locally if and only if (y, &)
is a chart of the graph. Since our x is a small deformation of the identity
map, it has a generating function. Since our x is homogeneous, choose
one which is homogeneous of degree 1, say S. We then define

For any symbol a(y, £) (defined on the domain of the definition of S(y, £))
we define the associated Fourier integral operator FX by

(132)  FXu(y) = cm / 902 oy €) u(z) dud€, cm = (21)™,

where, in our case m = 2n + 1, and the integral is the oscillatory inte-
gral. For the general properties of Fourier integral operators, we refer
to Hémander [16], or Grigis-Sjostrand [15]. We note that the calculus of
Fourier integral operators is a calculus modulo operators of order —o0,
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and that the formal sum 37,2, a(_;) of symbols, where a) is of oder &,
always converges.

D) We next write down the equation which must be satisfied by the
symbol a(y,&) so that the (10) in §1 is satisfied. The idea is to write
down the symbol of the form I(y,&) for the operator in the each side
of the equation (10) in §1. Then the equation holds when the symbols
coincide.

The pseudo-differential operator B with a symbol b(y, £) is given by

(14) Bu(y) = cn / W2 by, £) u(z) dde.

Then by the well known formula for the composition of pseudo-different-
ial operators we see that B o P#8 is a pseudo-differential operator with
the symbol

3 ; 0b3(y, )
o _ K A _rTs\hS)
We find by calculation that

(16) (FaoBg o P)uly) = e [ €090 (y, u(z)dodt, where

aP(y,8) = cm / eV W98 4(y 0)b%(v, £)dvds,
where ¢(y,U,9,€) = S(y’ 0) - S(y’f) —v- (0 - 6)’

(17)

where b is given in (15). In order to have a formula for a$ which is
more convenient for us, we need to replace 5% (v,€) in the above by a
symbol of the form b°(y, 8, ). We achieve this by using the Tayler series
with center v = S} (y, 8) of b*(v,&). Namely, when we set for a function
f(v), a multi-index I = (iy,...,%), 41,...,4 = 1,...,2n,0, and for
indeterminates w® '

__of I_ i
8@11 N 8vil ’

--w",  we have

(18.1) orf

(18.2) b%(v,€) = Y b3 (v,y,6,£), where
I
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(18.3) b2 (v,y,0,€) = (3rb™(v,€))=s; 4,0y (v — Sh(w,0))".
Note that

9t (y,,0,6)

i_ o WP(y,0,0,8) _
(19) (U Se]_ (y) 0))6 80_7

Hence, by integration by parts we find for example when I = (5 )

Z /eiw(y,v,o,g)i)%.)(v,y,o,g)a(y, 8)dudd
(20) i s
= (0,6 9[99 (0,8)
= /6 80J {( s )U:Sé(y,f))a(y’a)}d'vda.

Therefore repeating this process we find after a considerable amount of
calculation a symbol b*(y, 6, £) such that

(21) a3 (€) = e [ EHIO0O(y,0,)duds

Since ¢, [e*<*">g(r)dvdr = g(0), we see by the change of variable
T =0 — £ that

(22) a3(y,€) = b"(y,£,€).
For the left-hand side of (10) in §1 we see

Q% 0 Fauy) = e [ 4= ag(y,u(z)dsda,
aq(y, &) = Qya(y, &) + ¢* (¥, Sy (v, €))aly, ).
Therefore (10) in §1 is satisfied when with ap, ag given in (22), (23)

(24) a’P(yvg) = aQ(y>§)'

E) When we analyse the above construction more carefully, we find
after a great deal of calculation and cancellation that the above equation
(24) (mod. a symbol of order —co ) is satisfied if and only if the following
inductive conditions are satisfied: Set

(23)

(25) a(y7§) = Za(—l) (yaé)a
=0
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where a(_;y is of homogeneous degree —I. Then with unknown auxiliary
symbols C’g(_ l)(y, &) of homogeneous degree —!

5}
5 56 00 1.0 15(540,9.9)

(26)o .
= & Qe ) + G5y W, 0" (5:(v,),0).
and for [ >0
d
26) %5@{@(—0 (1,6) 75(Se(¥,€),€) — Cg_yy(y, )}
l

= & @ ®©) + C5_i_ny) @, )P’ (St (,€),6))-

We can also write down the equation for the symbol b3 of the pseudo-
differential operator Bf. It is written using the above C(y, £) and a(y, §).
However, since B does not contribute to the formula for singularity of
the Szego kernel, we omit it.

F) We have the graph G of our map x : (z,€) — (y,7n). In our case
(y,£) is a chart of G. Hence a(y, ) may be regarded as the expression
of a function a on G in terms of the chart (y,£). Then we may regard
the above equations (26); as equations defined on G. It turns out that
the equation written in terms of the chart (z, &, f, f) of G is easier to
solve.

We will consider the equation (26) on a conic open set 'S (M) (cf.

(7) in §1). The charts (y, &) and (z,&o, f, f) are related by :

@) e=Siwe. f= TS0, = £ - 5o,

Since r§(x,£) is of order 0, it is a function of (z, f, f). We define

(28.1) (R3(=, f, f)) = the inverse matrix of (r§(z,¢)),

or3(S¢(y,€), )
s

(82)  R@5H =R )&

oc)

f . ra - S; a§ a€
(29); ch(z, f, f) = %Rf‘,(m,f, ) (60)l+1 B( z)( 5(y ) ),

¢
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where Cfo) =0 and Cg _,;, for | > 1 are in (26). Set

(30) a8 = a8y oy = () acs(= £, )

=0

We denote by .
o 9 8 8
oxi’ 0&’ Of af«
the partial derivatives with respect to the chart (z,&o, f, f). Denote by
P2 the operator obtained from P& by replacing 8/0z by d/ozx.
We find after calculation using the change of charts formula that our
equation (26); for a<;> takes the form:

~ .0
(31), (P + lﬁ + R%)a<> = Ch* + Dg<l>fﬁ
for an auxiliary unknown symbol DZ_,,. In the above C%* = 0 and,
when we know the equation (31);, we know the equation (31);41 by using
CH1e given in (29);4+1 where

Ly 1
(32)141 Chi—i—1y) = Z(&))l-H TD5<r> ‘H(g Y Vsacs,

org & 7,87"5 0 157‘3‘ 0
o0&, OzF 2 8¢, ofr  29¢, 8f

We thus have an inductive equations for a<;» and DF_,. by (31); —
(32)l+1 and (29)l+1.

G) Besides satisfying the above conditions, a has to be such that F|,
is unitary up to an operator of order —oo, when restricted to a small
neighborhood of p.. We next write down the equation for a(y,§) to
satisfy this condition. Assume that a(y,§) is compactly supported in
yEeEM.

We fix a volume element in y-space, say V (y)dy. The volume element
depends on t, and it is the standard volume element when ¢t = 0. Let
< f,g >v denote the Lo inner product with respect to the volume
element. We have

(33) Vg =

X+ C&(R™) — C5° (M),

(34 FXuty) = em [ 40=9aly, ua)das
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Then (FX)3, is given by
(FX)y : Cgo(M) — C®(R*™),

(35) : -

(FOo@) = cn [ €907 30,6 V(3)o(u)dyde.
Let f be a cut-off function. Set f.(xz) = f(x/€) so that f. converges
to the constant function 1 as € — 0. Then we see easily by calculation
that FX o f(FX)y : C(M) — C§°(M) converges to an operator, say
FX o (FX)}, given by

(36) Fao(FX)yv(y)=c / e!SWO=5@Nq(y, £) a(f, &) v(H)V (§)dFdé.
We define & = k(y, 7,€) by
(37) S(y,&) — 81,8 =<y —4,6(1,9,§) > .

Solving £ in &, we have £ = £(y, 7, k). It then follows that

Foo (FX)vu(y) = cm/ei<y'g’“>b(y,gj, k)v(§)dydr, where

b(y, 9, %) = a(y, £y, §, ©))a(, (v, 5y ©))V (§) det iﬂ%_@

(38)

To replace the above b(y, 7, k) by a symbol of the form k(y, ) we
need

LEMMA. Let a(y,z,0) be a symbol. Then
(39)

/ei(y‘“‘)'ea(y,:B,H)u(a:)dwdﬁ = /ei(y_”’)'eb(y, 0)u(zr)dxdl, where

(40.1)
1 . S .
a(y,ZL', 0) = Z(—l)lﬁa‘jl,m WJi (yv 0)(:’/]1 - mh) s (le - x]l)) with

da(y,x,0
Qj,....5 (y> 0) = (%]1(—8—5637)30:1;

is the Taylor series centered at © = y of a(y, x,0) as a function of z, and

_ 1,1 0 0 _ _
(402) b(yﬁe) - Z(Z) l! aejl M 80Jl a‘_h,...,Jl (y79)'
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We see the above easily by integration by parts.
We then find that

(41)  F,oF *u(y) = c/eKy—g"'€> Zkl(y, k)u(§)dgdk, where
1=0
(42)
kl (y7 ’i)

2 —_— g, K
~ [ a0 650G €G3 RV () clen Ty

J=y

Clearly, F,oFY* has the same singularity as F,o f F.V'* when restricted
to a small neighborhood of p,. Therefore our condition is

(43) Z(%)l% ki(y, k) = 1 when y is in a neighborhood of p,.

We thus find

THEOREM. Assume that a symbol a(y, ) satisfies the following condi-
tions: (i) (25)-(26), (or equivalently (29)-(33)), and (ii) (42)-(43). Then,
when restricted to a small neighborhood of p., F, induces an unitary
operator of Lo space with respect to the volume element V and for a
suitable matrix (Bg) of pseudo-differential operators with compact sup-
port we have Fy o B o P8 = Q“ o F, modulo an operator of order
—00.

H) We next construct a Fourier integral operator pas which has the
same singularity near p. as the Szeg6 projection. Set

)
(44) Yu(z,7) =2 - 3° + 5(|z|2 +122-2< 22 >)
where < z,v >= z*v®. Then the Szegd projection operator pg for the
model case is given by

n!
(m)n+L

(45)  puu(@) = Cu / w(@)ds, Cy =

1
'l:bH (.’L‘, "i)n-}_1
Noting that

(46) Rivop (%) = ~%|z _ 3P <o,
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we find by integration by parts that we can rewrite

1

(47) pru(T) = cH/e"w”(z’i)Tnu(if)dde, CH = Tyt

where the integral for 7 is for 7 > 0.
Let a(y,£) be a symbol given in the theorem. Clearly with a cut-off
function f

(48) pv =Fyo fpr o fF)”

is the Fourier integral operator having the same singularity (near p, ) as
the Szeg6 projection of the CR structure M with respect to the volume
element V(y)dy.

In order to write pp; more explicitly we set

¥ (y,§,2,%,0,0,7)

(49) e
= 8(y,0) —z-0 +1yu(z,2) - S(7,0)+z-90.

We then find by calculation that with

(50.2)
pmv(y) = ey /ei‘l’(y’g’z’j’e’éﬁ)a(y,G)a(gj,é)'r”V(gj)v(g})dg}dmd[v’d@dédr.

In the above the integral is over (7],9,9,3:,:%,7’) where 6 and 6§ are
in a small cone neighborhood of ey, where (e5)? = 1, (eg)’ = 0 for
7 > 0. Therefore we may set 8 = yv, 6 = 6o where v,V are in a small
neighborhood of ey. On the other hand the critical cone of our phase
function ¥ is contained in the submanifold: 8y —7 =0, éo —7 = 0. Since
the singularity comes from the integral on a cone neighborhood of the
critical cone of the phase function, we may set

(51) 0=1v, 6=r10,
and use a new chart o of dimension my = 4(2n + 1) given by

(52) o= (z,v,iv), cW=z =y c®=z% o¥=p
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where v, ¥ are in a small neighborhood of eg. Then we can rewrite (50)
as

(53) pamv(y) =cM/e”q>(w"’)A(w,a, T)v(§)dodrdj, where

(54'1) w = (yag)a (I)(w,a) = S(y7 z/)——:c-y+1/)H(m,:E)—S(gj.ﬁ)+i-1§,

(54.2) A(w,o,7) = aly, 7v)a(g, 70)V(g)T™°, my=5n+2.

I) We are thus lead to consider an integral of the form

(55) Iw,7) = /e”q’(“””)A(w,a, 7)do,

with a reference point (w.,o.) where w, = (0,0) , and a,(}) = a£3) =
0, Uﬁz) = 0£4) = ey. Note that ® satisfies the following conditions:

(56)

®(wy,04) =0, ¥, (wy,0.) =0, det B _(ws,0.) # 0, S®(w,0) >0

We apply the method of stationary phase. We see by calculation that
the equation for the critical set of our complex phase function is given
by
(57) 3 )

S¢(y,0) = z, 0 = eq+ixy —i&+Ty, 5¢(5,0) = Z, 0 = eo+iz, —iZ4 +ay,

where
(58) zy = (zh,...,2*,0), x=(..,~z"", ..., z%...,0).

In order to have a nice solution of the above equation we complexify
the variable o, and consider the almost analytic extensions of S (y, &),
S¢(9,€). We keep w = (y,9) as a real vector variable. Then the equation
(57) is the same as an equation in (z,Z) given by

(59) S¢(y, eo +izy —iZy +3y) =z, Si(f,e0 +izy — iFy +ay) = &,

Since S¢(y, €) is s small deformation of y, the above equation has clearly
a unique complex solution. We denote the unique solution by

(60) z=X9), %=Xy
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Until further notice o is a complex vector variable. (57) suggests that
we set

(61) U(w) =ep +iX 4 (w) — iXy (w) + Xy(w),
U(w) =eo + i X4 (w) — X, (w) + Xy(w).

Hence the equation (59) is rewritten as

(62) Siu, Uw)) = X(w), 8.5, T(w)) = X(w).

We define a map Z of w-space to complexified g-space by

(63) t=Xw), v=Uw), i=Xw), ©»=Uw).

(w, 7Z(w)) is a parametrization of the complex critical cone of our phase

function ®(w, o). Note that Z(w.) = o.. We have a crucial estimate:

for a constant ¢ > 0,

(64) SP(w, Z(w)) > c|SZ(w)|?

(cf. the formula (2.5) in [22]).
J) Since @/ (w, Z(w)) =0,

(65.1) ®(w, Z(w) + o) = ®(w, Z(w)) + %Qab(w, 0)o%0® + p, where

(65.2) Qus(w,0) = 2 /0 (1= )", ,(w, Z(w) + s0)ds,

(65.3) lol < Cn(1Sal™ +|SZ(w)|Y)

for any natural number N. p with an estimate as above does not con-
tribute to the singularity of our formula. Hence we are going to ignore
it, using = instead of =.

We have for a choice of ¥¢(w,0)

(66) —iQab(w,0) =Y _ ¥ (w,0)T§(w,0).
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Defineamapo — 0 =(...,0%...) € C™ by
(67) 0%(w, o) = U (w, )0’
Let § — o = o(w, 6) be the inverse map. Hence
(68) o=o0(w,0) ifandonlyif 6=0(w,o).

Regarding o as a real vector variable, we have by (65.1), (66), and
(67)

(69.1)  i®(w,0) = ithnr (w) — %e(a,a ~ Z(w)) - 8(w, o — Z(w)),
(69.2) Ym(w) = ¥(w, Z(w)).

Therefore modulo an operator of order —oo

(70) I(’lU,T) - eiT’lpM(U))/ e—%G(W,U—Z(w))-a('w,a—Z(w))A(w’0’ T)dO',

m

where the integral is over the real variable o.

In order to avoid confusion we introduce a complex variable o¢c, a
copy of the complex variable o. From now on in this section o is always
a real vector variable. Similarly, we have 0, and a real vector variable
8. We also have the maps o — ¢ = 8(w, 0¢) and 8¢ — o(w, 0¢).

Denote by © the 4(2n+1)- form on oc-space given by

(71) 0= e_%e(w"’C)'o(“”"C)A(w, oc + Z(w),)doc,

We have for each w a submanifold I'(w) of real dimension 4(2n+1) de-
fined by

(72) I'w) = {oc =0 — Z(w) : o a real vector variable}.

Then by (70)

(73) I{w,7) = eT¥m®) / .
I'(w)
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We now change our variable from o¢ to ¢ = 8(w,o0¢c). Then with a
submanifold

(74) I'(w) = 8(w, T(w)) = {f(w, 0 - Z(w))},

we see by the change of variables formula

I(w, ) = eimém (@) / e~ 59500 A, o(w, 0c) + Z(w))
(75) T (w)

det Oo(w, bc)

00 dbc.

We then note that in our case the submanifold I'V(w) has a parameteri-
zation:

(76) I(w) = {p+iB(w,p) : pis a real vector variable}.

with a suitable real vector valued function B. Introduce a real parameter
s in [0,1]. We move by homotopy the domain I''(w) of the integral in
(75) to I',(w) : 6 = p+ isB . Then we find by the Stokes Theorem
and the almost analyticity that the integral does not change (mod. a
smooth operator) under the homotopy. Therefore we conclude that

(77)
I{w, )
= ein("’)/e_%p"’A(w, Z(w) + o(w, p),T) <det 90w, bc) 00)) dp.
00c 0o=p
Set
= 02 1
(78) A= Z W’ ;wM(w) =b

(79)  flw,p,7) = A(w, Z(w) + o(w, ), 7) (det 805912;60))9 :
o=p
so that (cf. (64))

(80) I(w,T) = /e‘”’e‘gf(w,p, T)dp. Rp>0.
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Set (cf. (54.2))

(81) f(w, P T) = Z f<s>(w, ,O)Tmo_s, mo = 5n + 2.
s=0

Let the strongly pseudo convex inside tubular neighborhood of M in
C™*! be defined by r > 0. We find that we can find such r(z) so that
with r(z,z’) given in (1) in the Introduction we have

(82) %@/}M(m,x’) =r(z,z’).
Therefore we conclude:

THEOREM. Let I(w, ) be given by (70). Then with r(w) defined as
above and f(w, p,T) given in (79) we have asymptotically

(83) /I(w T)dT = ZfO —t +10ngflr,
=0
(84) B=e0* Y LAk (0),
s+k=n—1

®)  f=0E0"F Y D)k (0)

s+k=n+l+1 "

To write down the singularity of the Szeg6 kernel we apply the above
formula in the case A(w, o, 7) is given by (54.2), where the symbol a(y, &)
is in the theorem in p.653. We then find the following: Using U(w), U(w)
given in (60)-(61) and o(w, f¢) given in (66)-(68), we set

aly, 7U(w) +70@(w,p)) a(g, Tﬁ(W)JrTG(‘*)(w P))
86 o(w
(86) (det 8—(80’—0—00—)9(3 —p = ZB<5> w, p)T~°
Then

(87) pur(y) = / K5(y, )o@V (§)dg
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where the Szegd kernel K°(y,) has the expression

(88) K(y,5) =) Fr(w)(r(w)™ '+ Y Gu(w) (r(w))"* logr(w),
k=0 k=0

®)  Fuw)= (G RET Y LAY Beos (7))o,

n—s—l=k
(90) k
_1)k+1
Grlw) = Ly ET ikt 7 L8, Bes (0, oo
s+k=n+l+4+1

§3. The constructions for solutions

A) We construct a solution of the equation (8) in §2. It has many
solutions. For simplicity we construct a solution of the form:

(1) A=Y Mo+ Ao Apo) = Mo

p>0
where A, o) is of type (p, ¢) in (9,9), 9 = g(y,n), with smooth functions
in y as coefficients. Define ¢*?(y) and c*(y) by
— 53 O 0
— 2008 ! 0 _ .«
(2) [Qa,Qﬁ]—ZC b?, [Q ,8/6y ]—C —a—y-6
Let (c,p) denote the inverse matrix of (¢®P). he, h* are functions in y.
We have
{9%,6°} =ic*g®, {a%, 9P} =c +ic"gP, {¢", ()} =0,

o 3 1 o o 1 o o o
{a*,2°} ==05, {4 'Y =—5h%w), {9% m0} = —c*.

(3)

Note that (y, no, g,g) is a~chart of the complexified cotangent space of
M. We denote by 9/0y,0/8m0,0/0g,8/0g the partial derivatives with
respect to the chart. We set §* = ¢*(y,1/i0/0y). We then find that
A(o,p) in (1) is given inductively as follows:

Oh>

(4.1) Aoy = z‘?%cagha, b= 25—, and forp >0
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i -
(4.2) ANogy = Egac,aa(Qﬁ —(p—2)")\op-1)-
We also define
a a a 1 o4 o _6)\( _+1’0)
(5) Sg="No Z(sﬂ)(p,o)a (Sﬁ)(p,O) = P+ 1(pc - Q%) ;gﬂ :

p=>0

The above X and s§ satisfy the equation (8) in §2.

B) The generating function S(y, ) for our symplectic map x can be
constructed as follows: for each £ consider the map : * — y = y(z,§).
Let

(6) y—z=12(y,¢)

be the inverse map. Then

(7) S(y, &) = &% (y,€), and
a8 .

® )

C) We construct a symbol a(y, §) satisfying the conditions (31)-(32)
in §2 as well as the conditions (42)-(43) in §2. We use the notations in
G) in §2.

By (42)-(43) in §2 we see that a(g)(y,{) must satisfy

O a0y, 0)aw 80 v RV () det ZELT
Note that

0
(10) (det i(%’gﬁ_))—l = [det gﬂ(lggﬂ]&é(y,ym)'

Therefore, when we set

ok(y,y,€)

(11) G(y,§) = V(y) det %

the condition (9) is equivalent to the condition:

(12) a0)(y,§)a) (¥, )V (y) = G(y,€).
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In view of (42)-(43) in §2 we set

(13) >z
=0

1y, 5) = k(y, k).

. =

L
I

Denote by E(l)(y, %) the homogeneous degree | part of k. We then find
that we can write down a function k?_l)(y, £,a00),--+ ,0(—141)) for 1 > 1
such that

E(—l) (ya K’(y7 Y, )) = (a‘( 1) (y7 f)a'(O) (y’ 5) + ao) (y7 f)(l(_l) (y’ 5))

(14) L
V(y)G(y,€)~ +’€ y®. €80, a-141))-

Then the (unitary) condition for a(_;(y,§) is given by

(a=py(y, E)a)(y, €) + a) (¥, &a—n{y, )V (y)

(15) ﬂ
+ k(_[) (ya f, a0y -« s a(—H—l))G(ya é—) =0.

D) a(y,£) must also satisfy the condition (31) in §2. We use the
notation in F) in §2. We set

(16) a‘<l>(m’ fa f) = a<l>¢(.’17) + Z a’<l>[p,q] (:1’.7 f7 f))

where a5 [p,q is of type (p,q) in f, f. We then see that the condition
(31); in §2 is a condition for a<;>¢, G<i>[0,q, and Dj ;.. We also see
that we can write down the solutions of (31) in §2 easily. Namely, we
define as above R3(z), RE C’la C[p @ Pi<sor Dhcispa where
D 1> Do I>[pq] 2T€ unknown. Then for arbitrary choice of a«;>4(x),
we have a solution. Namely

(17) a<i>0,1] = —f_EH(lp’av H;,a = C(lj,’a - Pga<z>¢ - R‘;

a<i>0,q for ¢ > 1 is similarly determined inductively, i.e.

T rrl,a la _ o Do
fqu , Hy% = CO,q = Praci>(o,q]

a<i>[0,q+1] =

(18)

—R¢a<z>{o,q Y. Biaa<isoal-
q1+492=9)
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To see this actually works, we need to show

Lo 1.8
19) OH,% _ 0H.,

YL ofe
We find the above is valid by calculation using the inductive assumption.
When a<i>¢, G<i>[0,q> 4= 1,2,... satisfy the above, we then see easily

that a«;> with arbitrary a<;>[p,q, p # 0, satisfies the equation (31); in
§2 by choosing Df_,., suitably.

The conditions (13)-(15), (17), and (18) in this section must be satis-
fied by our a(y, £). We see easily how to write down a(y, §), not uniquely,
satisfying the conditions.

E) We next make the construction of %(w, o), with a complex vector
variable o, in (65)-(67) in §2 more explicit. We find by calculation that
(using #’/,y’ instead of Z, 7, and p instead of ).

—i Qap(w,0) 8,0, = Q'(g,a) + Rap(w,0) g,04, Where

QYo,o) =iz -{2v—~iz, +iz', -z}

+ Z'C_L'_, . {-2& - 'if_L'_/+ + 7:§-|- + _x_n}v

(20) ! R
Rop(w,0) 0,0, = 22/0 (1= {80, (' s+ ply, v )p, e,
~ 500y, P+ v(y,y))y,u, }ds,
(21) U= (vo—leo+vy, f=(po—1eo+ py.

We also find by calculation (cf. (58) in §2)

4
1
(22) Q' (a,0) = Z Z(L(p)g) . (L(p)g), where with
p=1
(23.1) T, =ixy +xy, T, =ir, —xy,

LV =z + x4y + iz, + 2y,
LP¢ =iz — izy + ' + 2,
(23.2) R
L®g =g + 2/, + iz, — i2py,

LWeg =g — izl 4z — 2.
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We consider 6(w, o) of the form
(24) 6(w,0) = Lo + K(w, 0)0,

where we regard L and K(w,o) as mi X m; matrixes, m; = 4(2n + 1).
We also regard the quadratic form R as a matrix, say [R] representing
the map : 0 — &, where 5* = Ry, (w, 0)o®. Then our equation is

(25) (L' + K"K = [R).
The equation has a formal solution. Namely,
K=Y Kmn, Ki=(L""'[R],

(26) —1
K, =- (Ltr)_1 K;Kpy_j form > 1.

1

3

J

Since S(y,£) =y - € (mod t), R =0 (mod t). Hence we see that the
above gives a solution of (26) as a formal power series in t. We then find
by calculation

27) 0(w, o) = L\/ i + L1(L)-1[R] o.

Note that the inverse map L~! of the map o — [ = (I(1),1() (3) [(4)),
1?) = L?®)g, is given by

anzzzémn_dm%
0@ =y= i{(—il(l) F1®) i —a®y — i@l — al®)
+ (1)@ —i(l) @)}

(28) !

0@ = = Lq® _a®),

o = = @O — 1) =i ) + i - )
PP — i) ),

This complete the construction of #(w, o).
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84. The construction of the singularity

For convenience we write down our process of finding the formula for
the singularity of the Szeg6 kernel.

v, ¥,y represent points on a strongly pseudoconvex CR manifold M =
M;. z,Z,z’ are for the model case M. w = (y,9), 0 = (z,Z,v, 7).

1) Define A(y,n) by (1)-(4) in §3. Define s3(y,n) by (2) in §3 and (5)
in §3.

2) Define y(x,€) by (4) in §2 and (9) in §2. Let y — z(y, ) be the in-
verse map of z — y(z,&). Set S(y,&) = &;57(y,£). Then 85(y,£)/0¢; =
I (y, £).

3) Define x(w,&) by (37) in §2. Let x — &(w, k) be the inverse map
of £ — k(w,€). Define k;(y, ) by (42); in §2 and k(y, ) by (13) in §3.

4) The symbol a(y, ) is chosen to satisfy (11)-(12) in §3, (14)-(15) in
§3, (26) in §2 (equivalently (30)-(33) in §2, or a<;> in D) in §3).

5) Define X (w), X (w), U(w), U(w) by (61)~(62) in §2.

6) Defirle ®(w, o) by (54.1) in §2, and Z(w) by (63) in §2.

7) Define 6(w, o) by (65.2)-(66)-(67) in §2 (or E) in §3). Let § —
o(w, 8) be the inverse map of § — O(w, o).

8) The formula for the singularity is given in (86)-(90) in §2.
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