DOI QR코드

DOI QR Code

EXTENSION OF CR-FUNCTIONS DEFINED ON WEDGE-LIKE DOMAINS IN CR-MANIFOLDS

  • Published : 2003.07.01

Abstract

We give results describing behavior of regions of holomorphic extension of CR functions near boundary points of their domain of definition.

Keywords

References

  1. Sov. Math., Dokl.;translations from Dokl. Akad. Nauk SSSR v.24;259 Analytic continuation of CR-functions through the edge of the wedge R.A.Ajrapetyan;G.M.Henkin
  2. Princeton Math. Series v.47 Real Submanifolds in Complex Space and Their Mappings M.S.Baouendi;P.Ebenfelt;L.P.Rothschild
  3. J. Differential Geom. v.25 no.3 Normal forms for generic manifolds and holomorphic extension of CR functions M.S.Baouendi;L.P.Rothschild
  4. Ann. Math. v.114 no.2 A property of the functions and distributions annihilated by a locally integrable system of complex vector fields M.S.Baouendi;F.Treves https://doi.org/10.4310/jdg/1214440982
  5. Duke Math. J. v.51 no.1 About the holomorphic extension of CR functions on real hypersurfaces in complex space M.S.Baouendi;F.Treves https://doi.org/10.1215/S0012-7094-84-05105-6
  6. Israel J. Math. v.127 The Boggess-Polking extension theorem for CR functions on manifolds with corners L.Baracco;G.Zampieri https://doi.org/10.1215/S0012-7094-84-05105-6
  7. Stud. Adv. Math. CR Manifolds and the Tangential Cauchy-Riemann Complex A.Boggess https://doi.org/10.1007/BF02784524
  8. Duke. Math. J. v.49 Holomorphic extension of CR functions A.Boggess;J.C.Polking https://doi.org/10.1215/S0012-7094-82-04938-9
  9. J. Geom. Anal. v.11 no.4 An Edge-of-the Wedge Theorem for Hypersurface CR Functions M.C.Eastwood;C.R.Graham https://doi.org/10.1215/S0012-7094-82-04938-9
  10. Edge of the Wedge Theory in Hype-Analytic Manifolds M.C.Eastwood;C.R.Graham
  11. Monatsh. Math. Phys. v.43 Die Randwerte einer analytischen Funktion zweier Veranderlichen H.Kneser https://doi.org/10.1007/BF01707615
  12. Ann. Math. v.64 no.2 On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables H.Lewy https://doi.org/10.1007/BF01707615
  13. Math. Res. Lett. v.2 no.5 Extending CR functions from manifolds with boundaries A.E.Tumanov https://doi.org/10.2307/1969599
  14. Contemp. Math. v.205 Propagation of extendibility of CR functions on manifolds with edges, Multidimensional complex analysis and partial differential equations(Sao Carlos, 1995) A.E.Tumanov https://doi.org/10.1090/conm/205/02669
  15. Lecture Notes in Math. v.1684 Analytic discs and the extendibility of CR functions, Integral geometry, Radon transforms and complex analysis(Venice, 1996) A.E.Tumanov https://doi.org/10.1007/BFb0096093
  16. Trans. Amer. Math. Soc. Extension of CR-functions into weighted wedges through families of nonsmooth analytic discs D.Zaitsev;G.Zampieri https://doi.org/10.1007/BFb0096093
  17. Math. Ann. Extension of CR-functions on wedges D.Zaitsev;G.Zampieri
  18. D. Zaitsev and G. Zampieri, Extension of CR-functions on wedges, Math. Ann., to appear.