ON THE VOLUME MEAN VALUE PROPERTY FOR M-HARMONIC FUNCTIONS

JEONG SEON YI

ABSTRACT. We will show that if U is a Bergman ball $E(a; \delta)$ in $B_n \subset \mathbb{C}^n$ and if U has M-harmonic volume mean value property at a for all M-harmonic functions f on \overline{U} , then U must be a ball centered at the origin with a=0.

1. Introduction

There are two types of the converses to the mean value property of M-harmonic functions in a region Ω in the unit ball B_n of \mathbb{C}^n . One is on the dimension n and the other is on the region over which M-harmonic functions are integrated. See [1] and [3] for the first and the second type, respectively. For the case of harmonic functions in the Euclidean space, see [2, 4, 5].

Let $\phi_w(z)$ be an automorphism on B_n defined by

(1)
$$\phi_w(z) = \frac{w - P_w(z) - sQ_w(z)}{1 - \langle z, w \rangle}, \qquad s = \sqrt{1 - |w|^2}.$$

For a region $\Omega \subset B_n$, each function $f \in C^2(\Omega)$ is said to be *M*-harmonic in Ω if

$$(2) \widetilde{\Delta}f = 0$$

in Ω , or equivalently, if $\Delta(f \circ \phi_z)(0) = 0$ for each $z \in \Omega$, where Δ is the usual Euclidean Laplacian. See [6] for details.

Let U be an open connected, relatively compact set in $B_n \subset \mathbb{C}^n$ containing a with $\partial U = \partial \overline{U}$. As proved in [3] by J. Bruna and J.

Received April 21, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 32A99, 31B05.

Key words and phrases: Bergman ball, involution, M-harmonicity.

This work was supported by 2003 general research of Catholic University of Daegu.

Detraz, if $a \in U$ satisfies

(3)
$$f(a) = \frac{1}{\lambda(U)} \int_{U} f(z) \, d\lambda(z)$$

for all M-harmonic functions f in a neighborhood of \overline{U} , then U is a Bergman ball centered at $a \in U$; i.e., U is the image E(a;r) of a ball B(0;r) centered at 0 with radius r under ϕ_a for some 0 < r < 1. Here the measure

(4)
$$d\lambda = \frac{d\nu}{(1-|z|^2)^{n+1}}$$

is invariant under the action of $Aut(B_n)$.

On the other hand, they raised a question: what pairs (a, U) $a \in U$ have the property (2) with respect to $d\nu$? Does it follow that a = 0 (and hence U is a ball)?

In this short paper, we will show that if U is a Bergman ball $E(a; \delta)$ in $B_n \subset \mathbb{C}^n$ and if U has M-harmonic volume mean value property at a for all M-harmonic functions f on \overline{U} , then U must be a ball centered at the origin with a = 0.

The letter ν and σ will always denote the normalized Lebesgue measure on B_n and the regular probability Borel measure on the unit sphere S, respectively.

Any unexplained notations or terminologies are as in [6, 7].

2. The main result

We first begin with our definition.

DEFINITION 1. We will say that U as above has M-harmonic volume mean value property at $a \in U$ if it satisfies (3) with respect to $d\nu$ for all M-harmonic functions f on \overline{U} .

Now we will consider the case when U is a Bergman ball centered at a with radius δ . Recall that the involution ϕ_a interchanges 0 and a, and that the binomial series

(5)
$$(1-x)^{-\lambda} = \sum_{k=0}^{\infty} \frac{\Gamma(k+\lambda)}{k!\Gamma(\lambda)} x^k$$

holds for |x| < 1 when λ is not a negative integer. Here Γ denotes the Gamma function.

THEOREM 1. If a Bergman ball $E(a; \delta) \subset B_n$ satisfies M-harmonic volume mean value property at a, then a is the origin, and hence $E(a; \delta) = B(0; \delta)$.

PROOF. Let $\phi_a(z)_1$ be the first component of $\phi_a(z)$. Then clearly $\phi_a(z)_1$ is M-harmonic on $\overline{E}(a;\delta)$ since $\phi_a(z)$ is an automorphism on B_n . Hence by the change of variable $z=\phi_a(w)$ followed by the integration in polar coordinates, we get

(6)
$$\int_{E(a;\delta)} \phi_a(z)_1 \, d\nu(z) = \int_{B(0;\delta)} w_1 J_R(\phi_a(w)) \, d\nu(w)$$
(7)
$$= 2n \int_0^{\delta} r^{2n-1} \, dr \int_S r \zeta_1 J_R \phi_a(r\zeta) \, d\sigma(\zeta),$$

where $J_R(\phi_a(w))$ is the Jacobian of $\phi_a(w)$. Now we will calculate the inner integral. By [6], it is evident that

(8)
$$J_R \phi_a(z) = \left(\frac{1 - |a|^2}{|1 - \langle z, a \rangle|^2}\right)^{n+1}$$

Let $e_1 = (1, 0, 0, \dots, 0) \in \mathbb{C}^n$. Then by letting $a = |a|e_1$ by the unitary invariance of σ , it follows that

$$\int_{S} \zeta_{1} J_{R} \phi_{a}(r\zeta) d\sigma(\zeta) = (1 - |a|^{2})^{n+1} \int_{S} \zeta_{1} |1 - \langle a, r\zeta \rangle|^{-2n-2} d\sigma(\zeta)
= (1 - |a|^{2})^{n+1} \sum_{l,m} \frac{\Gamma(l+n+1)\Gamma(m+n+1)}{\Gamma(n+1)l!\Gamma(n+1)m!}
\times (r|a|)^{l+m} \int_{S} \zeta_{1}^{l+1} \overline{\zeta_{1}}^{m} d\sigma(\zeta).$$

The last equality holds by the binomial series (5). Recall that the holomorphic monomials z^{α} are orthogonal to each other in $L^{2}(\sigma)$. Thus, the last integral is zero unless m = l + 1. Therefore, by Proposition 1.4.9 [6], we obtain

(9)
$$\int_{S} \zeta_1^{l+1} \overline{\zeta}_1^{l+1} d\sigma(\zeta) = \frac{(n-1)!(l+1)!}{(n+l)!}.$$

Thus it follows that

$$\int_{S} \zeta_{1} J_{R} \phi_{a}(r\zeta) d\sigma(\zeta) = (1 - |a|^{2})^{n+1} r|a| \sum_{l=0}^{\infty} \frac{\Gamma(l+n+2)}{n\Gamma(n+1)l!} (r|a|)^{2l}$$
$$= \frac{n+1}{n} (1 - |a|^{2})^{n+1} r|a| (1 - (r|a|)^{2})^{-(n+2)}.$$

Since the integral in the left hand side of (6) is $\nu(E(a;\delta))\phi_a(a)$, which is obviously zero, by our assumption, a must be 0. This completes the proof.

References

- [1] P. Ahern, M. Flores, W. Rudin, An Invariant Volume-Mean- Value Property, Journal of Functional Analysis 111 (1993), 380-397.
- [2] D. H. Armigate and M. Goldstein, The Volume Mean-Value Property of Harmonic Functions, Complex Variables 13 (1990), 185-193.
- [3] J. Bruna and J. Detraz, A Converse of the Volume-Mean Value Property for Invariant Harmonic Functions, Proc. Amer. Math. Soc. 122 (1994), no. 4, 1029– 1034.
- [4] B. Epstein, On The Mean Value Property of Harmonic Functions, Amer. Math. Soc. 13 (1962), 830.
- [5] Ü. Kuran, On the mean-value property of harmonic functions, Bull. London Math. Soc. 4 (1972), 311-312.
- [6] Walter Rudin, Function Theory in the unit ball of \mathbb{C}^n , Springer-Verlag, 1980.
- [7] _____, Real and Complex Analysis, McGraw-Hill, New York, 1987.
- [8] M. Stoll, Invariant Potential Theory in The Unit Ball of Cⁿ, Cambridge University Press, 1994.

Department of Mathematics Catholic University of Daegu Kyungpook 712-702, Korea *E-mail*: jyijyi@cataegu.ac.kr