ON THE NILPOTENCY OF CERTAIN SUBALGEBRAS OF KAC-MOODY ALGEBRAS OF TYPE $A_N^{(r)}$

YEONOK KIM AND SEUNGKEUN MIN

ABSTRACT. Let $\mathfrak{g}=\mathfrak{g}(A)=\mathfrak{N}_-\oplus\mathfrak{h}\oplus\mathfrak{N}_+$ be a symmetrizable Kac-Moody algebra with the indecomposable generalized Cartan matrix A and W be its Weyl group. Let θ be the highest root of the corresponding finite dimensional simple Lie algebra $\mathring{\mathfrak{g}}$ of \mathfrak{g} . For the type $A_N^{(r)}$, we give an element $w_0\in W$ such that $w_0^{-1}(\mathring{\Delta}_+)=\mathring{\Delta}_-$. And then we prove that the degree of nilpotency of the subalgebra $S_w=\mathfrak{N}_+\cap w(\mathfrak{N}_-)$ is greater than or equal to $\mathrm{ht}\theta+1$.

0. Introduction

Let $\mathfrak{g}=\mathfrak{g}(A)$ be a symmetrizable Kac-Moody algebra with the indecomposible generalized Cartan matrix $A=(a_{ij})_{i,j\in I}$. It is well known that the generalized Cartan matrix $A=(a_{ij})_{i,j\in I}$ is either (i) finite (ii) affine or (iii) indefinite type (See Theorem 4.3 of [3]). Denote by $\Delta^{re}, \, \Delta^{re}_+, \, \Delta^{im}$, and Δ^{im}_+ the set of all real, positive real, imaginary and positive imaginary roots, respectively. Let $\Pi=\{\alpha_0,\alpha_1,\ldots,\alpha_n\}$ denote the set of simple roots and $Q=\sum_{i=0}^n Z\alpha_i$ denote the root lattice. For $\alpha,\beta\in Q$, we define $\alpha>\beta$ if $\alpha-\beta\in Q_+=\sum_{i=0}^n Z_{\geq 0}\alpha_i$. For $\alpha=\sum_{i=0}^n k_i\alpha_i\in Q$ we define the height of α by $ht(\alpha)=\sum_{i=0}^n k_i$ and

$$S_{w} = \mathfrak{N}_{+} \, \cap \, w \, (\mathfrak{N}_{-}) = \bigoplus_{\alpha \in \Delta^{+}(w)} \mathfrak{g}_{\alpha}$$

for $w \in W$ where $\Delta = \Delta_+ \cup \Delta_-$ is the set of roots of \mathfrak{g} with respect to \mathfrak{h} and $\Delta^+(w) = \{\alpha \in \Delta_+ \mid w^{-1}(\alpha) < 0\}$. The subalgebra S_w is finite-dimensional and nilpotent.

Received March 13, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 17B67.

Key words and phrases: affine Lie algebra, Weyl group, root system, degree of nilpotency.

This work was supported by Soongsil University Research Fund.

In [1], Billig and Pianzola conjectured that the degree of nilpotency of S_w is bounded by a constant which depends on A but not on w.

In this paper, we give the partial proof for Billig and Pianzola's conjecture for the type $A_N^{(r)}$.

First, we recall the theory of Kac-Moody algebras. And then we survey the theories of the root system and Weyl group of affine Lie algebras of type $A_N^{(r)}$.

In the case of rank 2, we prove that the degree of nilpotency is 1 or 2.

For the type $A_l^{(1)}(l>1)$ or $A_{2l-1}^{(2)}(l>1)$, we give an element w_0 of the Weyl group W such that $w_0^{-1}(\mathring{\Delta}_+) = \mathring{\Delta}_-$. And then we prove that the degree of nilpotency is greater than or equal to the ht θ .

In case of $A_{2l}^{(2)}(l > 2)$, we introduce an element $w_1 \in W$ such that $\{a\alpha_l + \delta, \alpha_l + 3\delta\} \cup \mathring{\Delta}_+ \subseteq \Delta^+(w)$ and we prove that the degree of nilpotency is greater than or equal to $ht\theta + 1$.

1. Preliminaries

Let $\alpha_{i_1}, \alpha_{i_2}, \dots, \alpha_{i_t} \in \Pi$ (not necessarily distinct) and denote by $r_i = r_{\alpha_i}$ the simple reflection of W. When $w \in W$ is written as $w = r_{i_1} \cdots r_{i_t}$ ($\alpha_{i_i} \in \Pi$, t minimal), we call the expression reduced.

PROPOSITION 1.1 (See [6]). Let $w = r_{i_1} \cdots r_{i_t} \in W$ be a reduced expression of w. Then we have

$$\Delta^+(w) = \{\beta_1, \cdots, \beta_t\},\,$$

where $\beta_p = r_{i_1} \cdots r_{i_{p-1}}(\alpha_{i_p})$ $(1 \leq p \leq t)$ and the β_p 's are all distinct.

We have the following lemma.

LEMMA 1.2. Let A be a generalized Cartan matrix of affine type, and W the Weyl group of the associated Kav-Moody algebra $\mathfrak{g} = \mathfrak{g}(A)$. Then

$$\Delta^+(w) \subset \Delta^{re}_+$$

for all $w \in W$.

PROOF. Since Δ_+^{im} is W-invariant by Proposition 5.2(a) of [3], we have $\Delta^+(w) \cap \Delta_+^{im} = \emptyset$. This completes the proof.

2. Root systems of affine Lie algebras of type $A_N^{(r)}$

Let $A=(a_{ij})_{i,j=0}^n$ be an indecomposable generalized Cartan Matrix of affine type and let $\mathfrak{g}=\mathfrak{g}(A)$ be an associated Lie algebra. The Kac-Moody Lie algebra $\mathring{\mathfrak{g}}=\mathfrak{g}(\mathring{A})$ associated with the Cartan matrix $\mathring{A}=(a_{ij})_{i,j=1}^n$ is a finite dimensional simple Lie algebra. Let Δ and $\mathring{\Delta}$ denote the set of roots for \mathfrak{g} and $\mathring{\mathfrak{g}}$, respectively. Note that $\Delta=\Delta_+\cup\Delta_-$, $\mathring{\Delta}=\mathring{\Delta}_+\cup\mathring{\Delta}_-$, $\Delta^{re}=\Delta_+^{re}\cup\Delta_-^{re}$, $\Delta^{im}=\Delta_+^{im}\cup\Delta_-^{im}$, where the subscript plus(minus) denotes the positive(negative) roots. Let $\mathring{\Pi}=\{\alpha_1,\cdots,\alpha_n\}$ and $\Pi=\{\alpha_0,\alpha_1,\cdots,\alpha_n\}$ denote the set of simple roots for $\mathring{\mathfrak{g}}$ and \mathfrak{g} , respectively. We denote by $\mathring{\Delta}_l$ ($\mathring{\Delta}_s$) the set of long(resp., short) roots for $\mathring{\mathfrak{g}}$.

Let $\mathfrak{g} = \mathfrak{g}(A)$ be the affine Lie algebra of type $A_N^{(r)}$ and let Δ be the root system of $\mathfrak{g} = \mathfrak{g}(A)$. We denote by Δ_s , Δ_m , and Δ_l the set of all short, medium, and long roots, respectively. We have the following Theorem.

THEOREM 2.1. Let W be the Weyl group of Kac-Moody algebra. Then there exists $w_0 \in \mathring{W}$ such that $w_o^{-1}(\mathring{\Delta}_+) \subseteq \Delta_-$.

PROOF. Since Π and $-\Pi$ are root bases, there exists $w_0 \in \mathring{W}$ such that $w_0^{-1}(\mathring{\Pi}) = -\mathring{\Pi}$ and hence $w_0^{-1}(\mathring{\Delta}_+) = \mathring{\Delta}_-$, we are done.

We can take such an element w_0 in the above theorem as follows:

PROPOSITION 2.2. (a) If A is of type $A_l^{(1)}(l>1)$ and l is odd, then

$$w_0 = (r_1 \cdots r_{l-1} r_l r_{l-1} \cdots r_1) (r_2 \cdots r_{l-1} r_l r_{l-1} \cdots r_2)$$
$$\cdots (r_{\frac{l-1}{2}} r_{\frac{l+1}{2}} r_{\frac{l-1}{2}}) (r_{\frac{l+1}{2}})$$

is an element of \mathring{W} such that $w_0^{-1}(\mathring{\Delta}_+) = \mathring{\Delta}_-$. If l is even, then

$$w_0 = (r_1 \cdots r_{l-1} r_l r_{l-1} \cdots r_1) (r_2 \cdots r_{l-1} r_l r_{l-1} \cdots r_2) \cdots (r_{\frac{l}{2}} r_{\frac{l}{2}+1} r_{\frac{l}{2}})$$

is an element of \mathring{W} such that $w_0^{-1}(\mathring{\Delta}_+) = \mathring{\Delta}_-$.

(b) If A is of type $A_{2l}^{(2)}$ (l > 1), then

$$w_0 = (r_1 \cdots r_{l-1} r_l r_{l-1} \cdots r_1)(r_2 \cdots r_{l-1} r_l r_{l-1} \cdots r_2) \cdots (r_{l-1} r_l r_{l-1}) r_l$$

is an element of \mathring{W} such that $w_0^{-1}(\mathring{\Delta}_+) = \mathring{\Delta}_-$.

PROOF. (a) By simple calculation, we have the desired results. (b) See Theorem 2.8 of [4].

The following proposition is well known.

PROPOSITION 2.3. (See [3]). Let A be a generalized Cartan matrix of type $A_{2l}^{(2)}$ and let $\mathfrak{g} = \mathfrak{g}(A)$. Then we have the following:

$$\Delta_{+}^{re} = \{\frac{1}{2} (\alpha + (2n-1)\delta) \mid \alpha \in \mathring{\Delta}_{l}, \ n \in Z\} \cup \{\alpha + n\delta \mid \alpha \in \mathring{\Delta}_{s}, \ n \in Z\} \cup \{\alpha + 2n\delta \mid \alpha \in \mathring{\Delta}_{l}, \ n \in Z\}.$$

(c)
$$\Delta_{+}^{re} = \{\frac{1}{2}(\alpha + (2n-1)\delta) \mid \alpha \in \mathring{\Delta}_{l}, n \in Z\} \cup \{\alpha + n\delta \mid \alpha \in \mathring{\Delta}_{s}, n \in Z\} \cup \{\alpha + 2n\delta \mid \alpha \in \mathring{\Delta}_{l}, n \in Z \text{ if A is of type } A_{2l}^{(2)}.$$

3. Degree of nilpotency of S_w

From now on, let $A = (a_{ij})_{i,j=0}^n$ be a generalized Cartan matrix of type $A_N^{(r)}$. For $w \in W$, define

$$(3.1) S_{w} = \mathfrak{N}_{+} \cap w(\mathfrak{N}_{-}) = \bigoplus_{\alpha \in \Delta^{+}(w)} \mathfrak{g}_{\alpha},$$

$$S_{w}^{0} = S_{w},$$

$$S_{w}^{k} = [S_{w}, S_{w}^{k-1}]$$

for $w \in W$, $(k = 1, 2, \cdots)$.

Billig and Pianzola (See [4]) conjectured that the least positive integer such that $S_w^k = \{0\}$ for all $w \in W$ is bounded by a constant which depends on the generalized Cartan matrix A but not on w.

We call this least positive integer the degree of nilpotency of S_w .

THEOREM 3.1. Let A be of type $A_1^{(1)}$, $\mathfrak{g} = \mathfrak{g}(A)$, and W the Weyl group of $\mathfrak{g} = \mathfrak{g}(A)$. Then the degree of nilpotency of S_w is 1.

PROOF. We know $\Delta^{re} = \{\pm \alpha_1 + n\delta \mid \alpha \in \mathring{\Delta}, n \in Z\}$ where $\delta = \alpha_1 + \alpha_2$. Since sum of any two real roots in Δ^{re} is not in Δ^{re} , combining (3.1), we have

$$\begin{split} S_w^1 &= [S_w, S_w] \\ &= \Big[\bigoplus_{\alpha \in \Delta^+(w)} \mathfrak{g}_\alpha, \bigoplus_{\alpha \in \Delta^+(w)} \mathfrak{g}_\alpha\Big] \end{split}$$

$$\subset \bigoplus_{\alpha,\beta \in \Delta^{+}(w)} \mathfrak{g}_{\alpha+\beta}$$

$$\subset \bigoplus_{\alpha,\beta \in \Delta^{re}} \mathfrak{g}_{\alpha+\beta}$$

$$= \{0\}$$

for given $w \in W$. This completes the proof.

THEOREM 3.2. Let A be a generalized Cartan matrix of type $A_2^{(2)}$, $\mathfrak{g} = \mathfrak{g}(A)$ the associated Lie algebra and W the corresponding Weyl group. Then the degree of nilpotency of S_w is 2.

PROOF. We know $\delta=2\alpha_0+\alpha_1.$ By definition of root system of $A_2^{(2)}$, we have

(3.2)
$$\Delta_s^{re} = \{x\alpha_0 + y\alpha_1 \mid 2x^2 - 8xy + 8y^2 = 2, x, y \in Z\}$$
$$= \{x\alpha_0 + y\alpha_1 \mid x = 2y \pm 1, x, y \in Z\}$$
$$= \left\{\frac{1}{2}(\pm \alpha_1 + (2n - 1)\delta) \mid n \in Z\right\}$$

and

(3.2)
$$\Delta_l^{re} = \{x\alpha_0 + y\alpha_1 \mid 2x^2 - 8xy + 8y^2 = 4, x, y \in Z\}$$
$$= \{x\alpha_0 + y\alpha_1 \mid x = 2y \pm 2, x, y \in Z\}$$
$$= \{\pm \alpha_1 + 2n\delta \mid n \in Z\}.$$

Combining (3.1), (3.2), and (3.3), we have

$$(3.4) S_w = (\bigoplus_{\alpha \in \Delta^+(w) \cap \in \Delta_s} \mathfrak{g}_{\alpha}) \bigoplus (\bigoplus_{\alpha \in \Delta^+(w) \cap \in \Delta_l} \mathfrak{g}_{\alpha})$$

$$(3.5) \qquad \Big[\bigoplus_{\alpha \in \Delta^+(w) \cap \in \Delta_s} \mathfrak{g}_{\alpha}, \quad \bigoplus_{\alpha \in \Delta^+(w) \cap \in \Delta_s} \mathfrak{g}_{\alpha} \ \Big] \quad \subseteq \bigoplus_{\alpha \in \Delta^+(w) \cap \Delta_l} \mathfrak{g}_{\alpha},$$

for given $w \in W$. Since

$$w^{-1}(\alpha_1 + m\delta) < 0$$
 implies $w^{-1}(-\alpha_1 + m\delta) > 0$

and

$$w^{-1}(-\alpha_1 + m\delta) < 0 \text{ implies } w^{-1}(\alpha_1 + m\delta) > 0,$$

combining (3.2), (3.3), we have

(3.6)
$$\left[\bigoplus_{\alpha \in \Delta^{+}(w) \cap \in \Delta_{l}} \mathfrak{g}_{\alpha}, \bigoplus_{\alpha \in \Delta^{+}(w) \cap \in \Delta_{l}} \mathfrak{g}_{\alpha}\right] = \{0\}$$

and

(3.7)
$$\left[\bigoplus_{\alpha \in \Delta^{+}(w) \cap \in \Delta_{s}} \mathfrak{g}_{\alpha}, \bigoplus_{\alpha \in \Delta^{+}(w) \cap \in \Delta_{l}} \mathfrak{g}_{\alpha}\right] = \{0\}$$

for $w \in W$. Thus we have

$$\begin{split} S_w^1 &= [S_w, S_w] \\ &= \Big[\bigoplus_{\alpha \in \Delta^+(w)} \mathfrak{g}_\alpha, \bigoplus_{\alpha \in \Delta^+(w)} \mathfrak{g}_\alpha\Big] \\ &\subset \bigoplus_{\alpha, \beta \in \Delta^+(w)} \mathfrak{g}_{\alpha+\beta} \\ &\subset \bigoplus_{\alpha \in \Delta_r^{re}} \mathfrak{g}_\alpha \end{split}$$

and

$$\begin{split} S_w^{\,2} &= [S_w, S_w^{\,1}] \\ &= \Big[\bigoplus_{\alpha \in \Delta^+(w)} \mathfrak{g}_\alpha, \bigoplus_{\alpha \in \Delta_l^{re} \cap \Delta^+(w)} \mathfrak{g}_\alpha\Big] \\ &= \{0\}. \end{split}$$

On the other hand,

$$\Delta^{+}(r_{1}r_{0}r_{1}r_{0}) = \left\{\alpha_{1}, \frac{1}{2}(\alpha_{1} + \delta), \alpha_{1} + 2\delta, \frac{1}{2}(\alpha_{1} + 3\delta)\right\}$$

and hence

$$\{0\} \neq \mathfrak{g}_{\alpha_1 + 2\delta} \subset S^1_{r_1 r_0 r_1 r_0}.$$

This completes the proof.

We introduce the following important element:

$$\theta = \delta - a_0 \alpha_0 = \sum_{i=1}^l a_i \alpha_i.$$

It is well known that θ is the highest root of $\mathring{\mathfrak{g}}$.

LEMMA 3.3 (See [4]). Each $\beta \in \mathring{\Delta}_+$ can be written in the form $\alpha_{i_1} + \cdots + \alpha_{i_t}$ ($\alpha_{i_j} \in \Pi$ not necessarily distinct) in such a way that each partial sum is a root.

THEOREM 3.4. Let A be of Affine type $A_N^{(r)}$. Let θ be the highest root in $\mathring{\Delta}_+$ with ht $\theta = k$. Then there is a finite sequence $\{\theta_n\}$ in $\mathring{\Delta}_+$, with the following properties:

- (a) ht $\theta_i = i$ for $1 \le i \le k$.
- (b) Every root $\alpha \in \mathring{\Delta}_+$ can be represented as a connected subroot of θ_i for some i with $1 \le i \le ht\theta$.

PROOF. By Lemma 3.3, θ can be written in the form $\alpha_{i_1} + \cdots + \alpha_{i_k}$ ($\alpha_{i_j} \in \Pi$ not necessarily distinct) in such a way each partial sum is a root. Construct a sequence $\{\theta_n\}$ by the following table:

$\mathfrak{g}(A)$	h	ň	$\theta_n, \ \theta$
$A_l^{(1)}$	l+1	l+1	$\theta_n = \sum_{i=1}^n \alpha_i, \ \theta = \alpha_1 + \dots + \alpha_l$
$A_{2l-1}^{(2)}$	2l-1	2l	$\theta_n = \begin{cases} \sum_{i=1}^n \alpha_i & \text{for } n \le l, \\ \sum_{i=1}^l \alpha_i + \sum_{i=2l-n}^{l-1} \alpha_i & \end{cases}$
$A_{2l}^{(2)}$			$\theta_{n} = \begin{cases} & \text{for } l+1 \leq n \leq 2l-1, \\ & \theta = 2\alpha_{1} + 2\alpha_{2} + \dots + 2\alpha_{l-1} + \alpha_{l} \\ & \text{for } n \leq l, \end{cases}$ $\theta_{n} = \begin{cases} & \sum_{i=1}^{n} \alpha_{i} & \text{for } n \leq l, \\ & \sum_{i=1}^{l} \alpha_{i} + \sum_{i=2l-n}^{l-1} \alpha_{i} & \\ & \text{for } l+1 \leq n \leq 2l-1, \\ & \theta = 2\alpha_{1} + 2\alpha_{2} + \dots + 2\alpha_{l-1} + \alpha_{l} \end{cases}$

This completes the proof.

THEOREM 3.5. Let A be a generalized Cartan matrix of type $A_l^{(1)}$ or $A_{2l-1}^{(2)}$ and θ the highest root of $\mathfrak{g}(\mathring{A})$. Then the degree of nilpotency is greater than or equal to $\mathrm{ht}\theta$.

PROOF. Let w_0 be an element of W such that $w_0^{-1}(\mathring{\Delta}_+) = \mathring{\Delta}_-$ and let θ be the highest root. Let $\{\theta_n\}$ be the sequence in the above table. Then we have

$$\mathfrak{g}_{\theta_i} \subseteq S_{w_0}^{i-1} \text{ for } i = 1, \cdots, \text{ht}\theta.$$

In particular, $\{0\} \neq \mathfrak{g}_{\theta} \subseteq S_{w_0}^{ht\theta-1}$. This complete the proof.

LEMMA 3.6 (See [4]). Let A be a generalized Cartan matrix of type $A_{2l}^{(2)}$. Then there exists an element $w_1 \in W$ such that

$$\left\{\frac{1}{2}(\alpha_l+\delta), \frac{1}{2}(\alpha_l+3\delta)\right\} \cup \mathring{\Delta}_+ \subset \mathring{\Delta}^+(w_1).$$

THEOREM 3.7. Let A be a generalized Cartan matrix of type $A_{2l}^{(2)}$ and θ the highest root of $\mathfrak{g}(\mathring{A})$. Then the degree of nilpotency is greater than or equal to $\operatorname{ht}\theta+1$.

PROOF. Let w_1 be an element of W such that

$$\left\{\frac{1}{2}(\alpha_l+\delta), \frac{1}{2}(\alpha_l+3\delta)\right\} \cup \mathring{\Delta}_+ \subset \mathring{\Delta}^+(w_1).$$

Then we can construct a sequence $\{\gamma_n\}$ in $\mathring{\Delta}^+(w_1)$ such that $\gamma_1 = \frac{1}{2}(\alpha_l + \delta), \ \gamma_2 = \frac{1}{2}(\alpha_l + 3\delta), \dots, \gamma_{2k-1} = \gamma_{2k} = \alpha_{l-(k-1)}$ for $2 \le k \le l$. By direct calculation, we have

$$\mathfrak{g}_{\sum_{i=1}^{n} \gamma_i} \subseteq S_{w_1}^{n-1}$$

for $1 \le n \le 2l$. Since $\sum_{i=1}^{2l} \gamma_i = \theta + 2\delta$, combining (3.8), we have

$$\{0\} \neq \mathfrak{g}_{\theta+2\delta} \subseteq S_{w_1}^{ht\theta}.$$

This completes the proof.

EXAMPLE 3.8. In $A_4^{(2)}$, let $w = r_1 r_2 r_1 r_2 r_0 r_1 r_0 r_2 r_1 r_0 r_2 r_1 r_0$. Then we have

$$\Delta^{+}(w) = \{\alpha_{1}, 2\alpha_{1} + \alpha_{2}, \alpha_{1} + \alpha_{2}, \alpha_{2}, \frac{1}{2}(2\alpha_{1} + \alpha_{2} + \delta), \alpha_{1} + \alpha_{2} + \delta, \frac{1}{2}(\alpha_{2} + \delta), 2\alpha_{1} + \alpha_{2} + 2\delta, \alpha_{1} + \alpha_{2} + 2\delta, \frac{1}{2}(2\alpha_{1} + \alpha_{2} + 3\delta), \alpha_{2} + 2\delta, \alpha_{1} + \alpha_{2} + 3\delta, \frac{1}{2}(\alpha_{2} + 3\delta)\}.$$

Put $\gamma_1 = \frac{1}{2}(\alpha_2 + \delta)$, $\gamma_2 = \frac{1}{2}(\alpha_2 + 3\delta)$, $\gamma_3 = \alpha_1$, $\gamma_4 = \alpha_1$. Then $\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4 = 2\alpha_1 + \alpha_2 + 2\delta$ is a root, and hence

$$\{0\} \neq \mathfrak{g}_{2\alpha_1 + \alpha_2 + 2\delta} \subset S_w^3.$$

References

- Yuly Billig and Arturo Pianzola, Root Strings with Two Consecutive Real roots, Tôhoku Math. J. 47 (1995), 391-403.
- [2] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, 1972.

- [3] V. G. Kac, Infinite-Dimensional Lie Algebras, Cambridge University Press, 1990.
- [4] Yeonok Kim, A Note on The Root System of an Affine Lie Algebra of Type $A_{2l}^{(2)}$, Commun. Korean Math. Soc. 16 (2001), no. 1, 85–94.
- [5] J. Morita, Root strings with three or four real roots in Kac-Moody root systems, Tôhoku Math. J. 40 (1988), no. 4, 645–650.
- [6] Z. Wan, Introduction to Kac-Moody Algebra, World Scientific Publishing Co. Pte. Ltd., 1991.

Department of Mathematics Soongsil University Seoul 156-743, Korea *E-mail*: yokim@mail.ssu.ac.kr