JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 6, NO. 4, JULY 2003

Efficient Dynamic Object-Oriented
Program Slicing

Soon-Hyung Park and Man-Gon Park

ABSTRACT

Traditional slicing techniques make slices through dependence graphs. They also improve the accuracy
of slices. However, traditional slicing techniques require many vertices and edges in order to express a
data communication link because they are based on static slicing techniques. Therefore the graph becomes
very complicated, and size of the slices is larger. We propose the representation of a dynamic object-oriented
program dependence graph so as to process the slicing of object-oriented programs that is composed of
related programs in order to process certain jobs. We also propose an efficient slicing algorithm using the
relations of relative tables in order to compute dynamic slices of object-oriented programs. Consequently,
the efficiency of the proposed efficient dynamic object-oriented program dependence graph technique is also
compared with the dependence graph techniques discussed previously. As a result, this is certifying that
an efficient dynamic object-oriented program dependence graph is more efficient in comparison with the
traditional object-oriented dependence graphs and dynamic object-oriented program dependence graph

Key words: program slicing, dynamic program slicing, program dependence graph, system dependence

graph, and dynamic system dependence graph

1. INTRODUCTION

rogram slicing is a progress of finding all
P statements in a program P that may directly
or indirectly affect the value of a variable var at
a point p. Accordingly, program slicing is a useful
technique with other applications in program de-
bugging by providing other programs that gather
statements relating to an interested variable in a
programl7,12,14]. Program slicing technique was
proposed by Mark Weiser for the first timef{10]. It
has been suggested a usage of this concept in the
program testing, maintenance, debugging, and pro-
gram understanding. Object-oriented program slic-
ing is working to get slices of object-oriented pro-
gram by tracing the flow of classes that is the core

* The authors are with the Dept. of Computer Science,
Graduate School, PuKyong National Univ.,, 599-1
Daeyeon-Dong, Nam-Gu, Busan, Rep. of Korea.
E-mails : nepaipark @hanmail.net and mpark @pkru.ackr

* Dr. Man-Gon Park is also with the Colombo Plan Stafj
College (Inter-Governmental International Organi-
zation), Dep. of Ed. Complex, Meralco Ave., Pasig
City, Metro Manila, Philippines.

E-mail : mpark @cpsctech.org

of object-oriented program and objects. Generally
it is important that in the object-oriented program
slicing we present polymorphism, dynamic binding,
class inheritance, etc[8].

Traditional program slicing techniques often use
graphs as a process of slicing to generate correc:
slices[9,11]. But traditional dependence graphs es-
pecially object-oriented dependence graphs anc
dynamic object-oriented dependence graphs are
complicated because that it need many vertexes
and edges to represent data transmission inter pro-
cedures([6]. So it is very difficult that programmer
and tester use them to debug source programs.

In this paper, we proposed several processes to
compute the result of dynamic object-oriented
dependence graph efficiently. We also demon-
strated that this dynamic object-oriented program
slicing technique is more effective than traditional
object-oriented program slicing technique.

In section 2, we review the studies concerning
traditional program slicing approaches. In section
3, we account for the Efficient Dynamic Object-
orient Program Dependence Graph (EDOPDG) that

EFFICIENT DYNAMIC OBJECT-ORIENTED PROGRAM SLICING 737

is proposed in this paper. In section 4, we introduce
the processes to compute dynamic object-oriented
program slices. In section 5, we apply the processes
for the application programs. The EDOPDG tech-
nique is compared with traditional methods in

section 6.

2. DEFINITION OF SLICING

Program slicing is a course to generate program
slices that is a set of statements that give effects
to given variables directly or indirectly. The slicing
technique is classified by the two criteria.

Firstly, it can be divided into static slicing and
dynamic slicing by existence of execution history.
Secondly, it can be divided into program slicing,
system slicing and object-oriented program slicing
by the number of programs that are objects of
slicing{2,3,5].

Program slicing may be included the concept of
system slicing. Especially, it may be called as
procedure slicing where an object of the program
slicing is single program. An important distinction
of static slice and dynamic slice is that the former
notion is computed without making assumptions
regarding a programs input, whereas the latter

relies on some specific test casell,4].

CEL : class Elevator {

public:
E2: Elevator(int 1_top_floor)
S3: { current_floor = 1;
S4: current_direction = UP;
S5 top_floor = 1_top_floor; }
E6: virtual ~Elevator() {}
ET: void up()
S8 { current_direction = UP; }

E9: void down()
S$10: { current_direction = DOWN;, }
Ell: int which_floor()

S12: { return current_floor; }
E13: Direction direction()
S14: { return current_direction; }

E15:
Sl16:
SiT:

C18:

S19:

C20:

E21:
S22:

CE23:

E24:
S25:
526
E27:
528:
E29:
S30:
E31:
S32:
C33:

E34:

S35
S36:

S37.
C38:

virtual void go (int floor)
{ if (current_direction == UP)
{ while ((current_floor != floor) &&
(current_floor <= top_floor))
add(current_floor, 1); }
else
{ while ((current_floor != floor) &&
(current_floor > 0))
add(current_floor, -1); }

}

private:

add(int &a, const int& b)
{a=a+hb}

protected:

int current_floor;

Direction current_direction;
int top_floor;

|8

class AlarmElevator : public Elevator {
public:
AlarmElevator(int top_floor):
Elevator(top_floor)
{ alarm_on = 0; }
void set_alarm()
{ alarm_on = 1; }
void reset_alarm()
{ alarm_on = 0;)
void golint floor)
{ if (talarm_on)
Elevator::go(floor)

b

protected:
int alarm_on;

b

main(int argc, char **argv) {
Elevator *e_ptr;
if (argvil])
e_ptr = new AlarmElevator(10);
else
e_ptr = new Elevator(10);
e_ptr->go(3);

738 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 6, NO. 4, JULY 2003

539: cout << \n Currently on floor:
<< e_ptr->which_floor() << "\n";
}

Fig. 1. Sample Program

3. EFFICIENT DYNAMIC OBJECT-
ORIENTED PROGRAM DEPEN-
DENCE GRAPH

An Efficient Dynamic Object-oriented Program
Dependence Graph (EDOPDG) proposed in this
paper is similar to the Program Dependence Graph
(PDG) in the respect that the graphs represent the
control dependence information by the control de-
pendence edges and the data dependence infor-
mation by the data dependence edges at the state-
ments vertexes. The traditional object-oriented
program dependence graphs is added the member
variable edges, the call edges for construction of
objects, the polymorphic call edges, the method call
edges, etc. However, EDOPDG only is added the
polymorphic call edges.

The process that is drawn up EDOPDG is as
follows.

(1) We draw up edges in the graph using the
static information of a source programn within the

limits of an execution history.

» class control dependence edges

* procedure control dependence edges
» method control dependence edges

« repetition control dependence edges
+ selection control dependence edges
* inter—procedure edges

 return control dependence edges

» polymorphic choice edges

« polymorphic call edges

« polymorphic execution edges

(2) After we compute the data dependence
edges, we add them to the graph if the paths of
them in the graph are not already existent.

(3) After we compute the control dependence
edges, we add them to the graph if the paths of

Fig. 2. The EDOPDG of sample program of Fig. 1.

EFFICIENT DYNAMIC OBJECT-ORIENTED PROGRAM SLICING 739

them in the graph are not in existence. Start nodes

of control dependence are as follows.

* selection control nodes that are in the upper
level of nodes that are in existence two times and
over in the area from the criterion node to the exit
node of data dependence.

« repetition control nodes that are in the upper
level of nodes that exist in the area from the
criterion node to the exit node of data dependence.

4. STEPS OF THE DYNAMIC OBJECT-
ORIENTED PROGRAM SLICING

The procedure that computes the dynamic
object-oriented program slices using the efficient
dynamic object-oriented program dependence graph
(EDOPDQG) is divided into four steps.

Firstly, a step of the program node analysis

Secondly, a step of the program execution
history analysis

Thirdly, a step of the dynamic object-oriented
program dependence graph generation

Finally, a step of the sliced program generation

An execution history is a set of the sequence
<Vy, V2, o , Vo> by order to be visited during

execution of given test case.

4.1 A step of the program node analysis

A step of the program node analysis is a phase
drawing up a table of related nodes on source
programs. A table of the related nodes is a set of
data that stores components of nodes of program
statements. It is made up Node Numbers, Node
types, DEFs, REFs, Upper position node and Upper
repetition control node.

(1) Node types
Nodes that compose of programs are divided into
11 types.

(2) DEFs
A set of variables that have values changed at

its node

(3) REFs
A set of variables that have values used at its

nodes

(4) Upper position nodes
Upper position nodes of the current nodes

(5) Upper repetition control nodes
Upper repetition nodes of the current nodes

4.2 A step of the program execution his-
tory analysis

This step is a phase that analyzes source pro-
grams and draws up a execution history table
when source programs are actually executed. An
execution history table is a set of data on tracks
operated when programs are executed. It is con—
sisted of sequences of node execution and node
numbers. Sequences of node execution imply the
orders of execution history. Node numbers of the
execution history table are equal to node numbers
of a table of the related nodes.

4.3 A step of the dynamic object-oriented
program dependence graph genera-
tion

This step is a phase that draws up EDOPDG by

applying the efficient dynamic object-oriented
program-slicing algorithm based on an execution
history corresponding to the given input data.

The algorithm that computes dynamic object—

oriented program slices (Mark) is as follows. We
present the algorithm written in a let-in construct
adapted from a similar construct in the pro-
gramming language ML [13].

EDOPDG(<prevhist | Mark>) =
SetVar’ = Ins(Criterion, SetVar)
DependCheck(Criterion, 1, 1)
while k = 1, n
DependCheck(IfCriterion, lastnum, 2)
end while

740 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 6, NO. 4, JULY 2003

while k =1, m
if SubSist(k, CheckObject)
then DependCheck(RepeatCriterion, 1, 2)
end if
end while
in (Criterion, IfCriterion, RepeatCriterion,
CheckObject, Mark’, SetVar’)

DependCheck(Criterion, lastnum, RepeatUpper,
CheckObject, init) =
let startnum = Criterion
while k = startnum, lastnum, -1
if (NodeTypelnum) = "R")
then Return (Ref, num, SetVar, sist,
Mark, last),
end if
if (NodeType(num) = "A")
then Assign(Mark, num, Def, Ref,
SetVar, last),
end if
if (NodeType(num) = "I")
then Input(Mark, num, Def, SetVar, last),

end if
if (NodeType(num) = "CE" or
NodeType(num) = "M" or

NodeType(num) = "P" or
NodeType(num) = "C" or
NodeType(num) = "N}

then Ins(Mark(i) , num),

last = {

end if

if (init = 1 and RepeatUpper(num) not
="

then CheckObject(x) = num

end if

if Gnit = 1 and NodeType(num) = "D")
Criterion(n) = (Ref, num),
Select(Mark, num, Ref, SetVar, sist)

end if

if (init = 1 and NodeType(num) = "L")
Criterionim) = (Ref, num),
Repeat(Mark, num, Ref, SetVar)

erd if

end while
lastnum = last

in (Criterion’, lastnum’, RepeatUpper
CheckObject’, init)

Return (Ref, num, SetVar, sist, Mark, last)
SubSist(Ref(num), SetVar)
if (sist = 1)
then Ins(Mark(i) , num),
last = i
end if
in (Ref, num, SetVar’, sist, Mark’, last’)

Assign(Mark, num, Def, Ref, SetVar, last)
Ins(Mark(i), num),
last = i,
Del(Deflnum), SetVar)
if (Refilnum) not =" ")
then Ins(Refinum), SetVar)
end If
in (Mark’, num, Def, Ref, SetVar’, last’)

Input(Mark, num, Def, SetVar, last)
Ins(Mark(i), num),
last = I,
Del(Def(num) , SetVar)
in (Mark’, num, Def, SetVar’, last’)

Repeat(Mark, num, Ref, SetVar)
SubSist(Reftnum), SetVar)
if (sist = 1)
then Ins(Mark(i), num),
Ins(Reflnum), SetVar)
end if
in (Mark’, num, Ref, SetVar’)

Select(Mark, num, Ref, SetVar, sist)
SubSist(Refinum), SetVar)
if (sist = 1)
then Ins(Mark(i) , num),
Ins(Reflnum), SetVar)
end if
in (Mark’, num, Ref, SetVar’, sist’)
Ins(Var, SetVar) =
Ins(Var, SetVar’) =

EFFICIENT DYNAMIC OBJECT-ORIENTED PROGRAM SLICING 741

UxepVar(x) U Uy ep SetVar(x)
in (Var, SetVar')

Del(Var, SetVar) =

Del(Var, SetVar’) =
UsxepSetVar(x) - U «ep Var(x)

in (Var, SetVar’)

SubSist(Var(x), SetVar) =

let Sist = 0
flUxepValx) N UxepSetVar(x))
then Sist = 1
end if

in (Var, SetVar, Sist’)

4.4 A step of the sliced program genera-
tion

This step is a phase that extracts program slices
by traversing inversely EDOPDG to draw dynamic
slices on based variable. A sliced program is a
perfect program that can be executed for given

input data.

5. APPLICATION EXAMPLE

We apply the dynamic object-oriented program
slicing algorithm to an example program in Fig.
1 in order to make dynamic object—oriented slices
where argv[1] = 3 and slicing criteria = (H, 39,
which_floor). The types of nodes that consist in
the program are noted in Table 1.

5.1 A step of the program nodes analysis

The analysis data table of nodes that consist in
the sample program from Fig. 1 is appeared in
Table 2.

5.2 A step of the program execution his-
tory analysis

The execution history of the example program
shown Fig. 1 is { 34, 35, 37, 2, 3, 4, 5, 38, 15, 16,
17, 18, 21, 22, 17, 18, 21, 22, 17, 11, 12, 39 } where

Table 1. Types of nodes

Type of node Abbreviation

class CE

method

procedure

call

return

assign

input

write

repeat

select

z|gi— S |=»m| o=

constructor

Table 2. The data of related nodes for the Example

Program
NN|NT DEF REF PMN
1 | CE | Elevator 1
2 | M |Elevator 1_top_floor 1
3 | A |current_floor 2
4 | A |current_direction 2
5 | A |top_floor 1_top_floor 2
6 | M | ~Elevator 1
7 M jup 1
8 | A |current_direction 7
9 | M |down 1
10 | A |current_direction 9
11 | M | which_floor 1
12| R current_floor 11
13 | M |direction 1
14| R current_direction | 13
15| M |go floor 1
16| D current_direction | 15
current_floor,
17| L floor, 15
top_floor
18| C Jadd current_floor 15
current_floor,
191! L floor 15
201 C |add current_floor 15
21 | P |add a, b 18
221 A |a a, b 21
23 | CE | AlarmElevator 23
24 | M | AlarmElevator top_floor, . . 23
current_direction
25 | C |Elevator top_floor 23
26 | A [alarm_on 23
27 | M [set_alarm 23
28 | A jalarm_on 27
29 | M |reset_alarm 23
30 | A |alarm_on 29
31| M {go floor 23
321D alarm_on 31

742

JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 6, NO. 4, JULY 2003

Table 2. Continued

NN|NT DEF REF PMN
33] C |go floor 31

34 | E |main arge, **argyv 34

351D argvl[1] 34

36 | N [AlarmElevator 34

37 | N }Elevator 34

38| C [go 34

39| W which_floor 34

argv[1] = 3.

5.3 A step of the dynamic object-oriented
program dependence graph genera-

The EDOPDG of sample program shown Fig. 1

tion

is illustrated in Fig. 2.

5.4 A step of the sliced program genera-

A sliced program can be constructed by tra-
versing the EDOPDG shown Fig. 2 to compute dy-
namic object-oriented program slicies where slic~
ing criterion is which_floor of execution history or-
der 39. The sliced program is illustrated in Fig. 3.

tion

class Elevator {

public:

Elevator(int 1_top_floor)

{ current_floor = 1;
top_floor = 1_top_floor; }

int which_floor()

{ return current_floor: }

virtual void go (int floor)
{ while ((current_floor != floor) &&
(current_floor <= top_floor))
add(current_floor, 1); }

private:

add(int &a, const int& b)
{a=a+bh

protected:

int current_floor;

Direction current_direction;
int top_floor;

IE

main(int arge, char **argv) {

Elevator *e_ptr;

e_ptr = new Elevator(10);

e_ptr->go(3);

cout <<"\n Currently on floor:”

<< e_ptr->which_floor() << "\n";

Fig. 3. Sliced program

6. EFFICIENCY ANALYSIS

The complexities of graph of the traditional

object-oriented program dependence graph(OPDG),

the traditional dynamic object-oriented program
dependence graph(DOPDG) and the efficient dy-

namic object-oriented program dependence graph

(EOPDG) proposed in this paper are all repre-

sented.

6.1 Complexities of the OPDG

The complexities of the traditional OPDG are

represented below.

Type Complexities of the OPDG
procedure pv+pc* (L +pep*2) +p
dependence + 2% pp +sc* (]l + scv*2)
class s+ (sv+sc)+m*2 =
dependence (mp + scp)

s [semeam-2
Na“?‘e of Contents of variable
variable

p Procedure

PP Parameter of procedure

pv General vertex in the procedure

F- pc Call in the procedure
pcp Parameter of call in the procedure
sC Class construction call
scv Variable of class construction call
S Class
m Method
mp Parameter of method
sC Call in the class
scp Parameter of call in the class

Genaral vertax in the class

EFFICIENT DYNAMIC OBJECT-ORIENTED PROGRAM SLICING 743

6.2 Complexities of the DOPDG

The complexities of the traditional DOPDG are

represented below,

Type Complexities of the DOPDG
procedure
dependence p*opct 3*pv
S:psesndence S*sctm*3sy

Inter-class
dependence

6.3 Complexities of the EDOPDG

The complexities of the traditional EDOPDG are

represented below.

Type Complexities of the EOPDG
rocedure
gEDendence pv + p + 2 * (pc + sc)
class ey s .
dependence s s sc + m

Inter-class
dependence

6.4 Comparison of efficiency with OPDG

(1) The size of slices

The sizes of slices of the traditional OPDG
techniques, the traditional DOPDG techniques and
the EDOPDG technique proposed in this paper are
represented below.

Type Size of slices
OPDG 28
DOPDG 18
EDOPDG 15

The size of slices of the EDOPDG is smallest
compared with that of the other graphs. Therefore
we find that the technique of EDOPD is the best
method among them to compute slices of the
object-oriented programs.

(2) The comparison of complexities
The complexities of the traditional OPDG

techniques, the traditional DOPDG techniques and
the EDOPDG technique proposed in this paper are

represented below.

Type Maximgm Actugl .
complexities complexities
OPDG 361 110
DOPDG 69 22
EDOPDG 42 17

The value of maximum complexities in the
traditional OPDG is different from that of actual
complexities because all of the parameters of call
statements may not be able to be changed. In the
case of the repetition statements, the value of
maximum complexities in the traditional DOPDG
is different from that of actual complexities on
account of the number of repetition nodes. The
value of maximum complexities in the EDOPDG
is different from that of actual complexities
because of vertexes that are not contained in the
dynamic slices.

The value of the complexities of the EDOPDG
is smallest comparing with that of the other
graphs.

7. CONCLUSION

Static slices are a set of nodes that affect
criterion variables. Dynamic slices are a set of
nodes that affect actually the values of variables
tracing on the test case. Therefore we can use
usefully a dynamic concept in the field of the
debugging through a test case.

We propose a dynamic object-oriented slicing
technique using EDOPDG in this paper. We find
that the complexities of the EDOPDG is 42, the
traditional complexities of the OPDG is 361 and the
traditional complexities of the DOPDG is 69 with
a result that we apply an example program of the

744

fig. 1 to the formulas of the complexities using the
traditional OPDG technique, the traditional DOPDG
technique and the EDOPDG technique. As the
result, the values of the actual complexities of the
EDOPDG, OPDG and DOPDG are 17, 110 and 22
respectively.

The size of the slices of the EDOPDG is 15
where the slicing criterion is which_floor in the
node 39. The sizes of the slices of the OPDG and
DOPDG are 28 and 18 respectively.

We find that the approach of the EDOPDG is
more efficient compared with those of the OPDG
and DOPDG.

8. REFERENCES

[1] Arpad Beszedes, Tamas Gergely, Zsolt Mihaly
Szabo, Janos Csirik, Tibor Gyimothy, "Dynamic
Slicing Method for Maintenance of Large C
Programs.”, Conference on Software Mainte-
nance and Reengineering (CSMR), Lisbon,
Portugal, pp.105-113, 2001.

{21 B. Korel, "Computation of Dynamic Program
Slices for Unstructured Programs.”, IEEE
Trans. on Software Engineering, vol. 23, No.
1, pp.17-34, January 1997.

[3] B. Korel, "Computation of dynamic slices for
unstructured programs.”, IEEE Transactions
on Software Engineering, vol.23, No.l, pp.17-
34, 1997.

[4]1 B. Korel and J. Laski, "Dynamic Program
slicing.”, Information Proceeding Letters,
vol.29, No.3, pp.155-163, 1998.

[5] Hiralal. Agrawal and J. R. Horgan, "Dynamic
Program Slicing.”, Proc. ACM SIGPLAN'90
Conf. Programming Lang. Design and Imple-
mentaion, pp.246-256, 1990.

[6] J. Zhao, "Dynamic Slicing of Object-Oriented
Programs,” Technical-Report SE-98-119, pp.

[71]

[8]

(9]

[10]

f11]

[12]

{13]

[14]

JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 6, NO. 4, JULY 2003

17-23, Information Processing Society of
Japan (IPS]), May 1998.

Karl J. Ottentein and Linda M. Ottentein. "The
program dependence graph in a software
development environment.”, Proc. of the ACM
SIG SOFT/SIGPLAN Symposium on Prac-
tical Software Development Environments,
Pittaburgh, Pennsilvania, April 1984.

Loren D. Larsen and Mary Jean Harrold,
"Slicing Object-Oriented Software.”, Tech-
nicdal Report 95-103, Department of Com-
puter Science, Clemson University, March
1995.

Margaret Ann Francel, Spencer Rugaber,
"The wvalue of slicing while debugging.”,
Science of Computer Programming, Volume
40, Number 2-3, pp.151-169, July 2001.
Mark Weiser, "Program slicing.”, IEEE Trans.
on Software Engineering, pp.352-357, July
1984.

Park, S. H. and Park, M. G., "An efficient
dynamic program slicing algorithm and its
Application.”, Proc. of the IASTED Inter—
national Conference, Pittsburgh, Pennsylva-
nia, pp.459-465, May 1998.

Raghavan Komondoor, Susan Horwitz, "Tool
Demonstration: Finding Duplicated Code Using
Program Dependences.”, European Sympo-
sium on Programming (ESOP), Genova, Italy,
pp.383-386, 2001.

Robin Milner, Mads Tofte, and Robert Harper.
"The Definition of Standard ML.”, The MIT
Press, Cambridge, MA, 1990.

Susan Horwitz, T. Reps and David Binkley.
"Interprocedural Slicing using Dependence
Graph.”, ACM Tran. on Programming Lan-
guages and Systems, vol. 12, no. January
1990.

EFFICIENT DYNAMIC OBJECT-ORIENTED PROGRAM SLICING 745

Soon-Hyung Park

Dr. Soon-Hyung Park is a
Lecturer of the Department of
Computer Science at PuKyong
National University (PKNU),
Korea.

Also Dr. Soon-Hyung Park is
serving for the Inter-
Governmental International Organization, Colombo
Plan Staff College as an assistant faculty.

From 1987 to 2002, he was a professor of the DongEui
Institute of Technology, Busan, Korea and also he
worked for Hyundai-Mipo Dockyard Co., Ulsan City,
Rep. of Korea as a Computer programmer from 1981
to 1986.

He received his bachelors, masters and doctoral
degrees in Computer Science from the Ulsan
University, Soongsil University and PuKyong National
University, Rep. of Korea, respectively.

His interesting fields in research are! software testing,
program slicing and merging, software reengineering,
multimedia information processing technology, and
Quality Management System.

Man-Gon Park

Prof. Man-Gon Park is a Pro-
fessor of the Department of
Computer Science at PuKyong
National University (PKNU),
Korea, where he had worked
since 1981. He was also visiting
professor at the Department of
Computer Science, University of Liverpool, UK;
exchange professor at the Department of Electrical and
Computer Engineering, University of Kansas, USA;
and visiting scholar at the School of Computers and
information science, University of South Australia. He
was dispatched to Mongolia and China by KOICA on
various projects as information systems consultant. He
has joined in international consulting works for Sri
Lanka, Vietnam, and other countries funded by ADB,
ILO and other international organizations.

Currently Dr Man-Gon Park is holding the Director
and CEO of the Inter-Governmental International
Organization, Colombo Plan Staff College, concurrently
with a PKNU professor as the principal position by
Korean Government.

Some of his areas of interest in research are: software
reliability engineering, business process reengineering,
Internet & Web Technology, and multimedia in-
formation processing technology, and Quality Man-
agement System. He is a member and academic board
member of such professional societies as the KIPS, the
Korean Multimedia Society, IEEE, ACM and IASTED.
He has authored and co-authored lots of academic and
technical papers, books and other reports in his field
of expertise.- He received his bachelors, masters and
doctoral degrees in Statistical Computing Science from
the KyungPook National University, Korea.
Recently Korean Government has awarded him with
the official commendation for his professional con-
tributions and achievements in development of knowl-
edge networking system & web-based information
systems.

For information of this article, please send e-mail
to: mpark @pknu.ac.kr(Man-Gon Park)

