DOI QR코드

DOI QR Code

비동질적 포아송과정을 사용한 소프트웨어 신뢰 성장모형에 대한 베이지안 신뢰성 분석에 관한 연구

The Bayesian Analysis for Software Reliability Models Based on NHPP

  • 이상식 (송호대학 정보산업계열) ;
  • 김희철 (송호대학 정보산업계열) ;
  • 송영재 (경희대학교 컴퓨터공학과)
  • 발행 : 2003.08.01

초록

본 논문에서는 비동질 포아송 과정(NHPP)에 기초한 소프트웨어 에러 현상에 대한 신뢰도 모형을 고려하고 사전정보(Prior information)를 이용한 베이지안 추론을 시행하였다. 고장 패턴은 NHPP에 대한 강도함수와 평균값 함수로서 나타낼 수 있다. 따라서 본 논문에서는 대수형 포아송 실행시간 모형(Logarithmic Poisson model), Crow 모형 그리고 Rayleigh 모형에 대하여 베이지안 모수 추정방법을 적용하였다. 효율적 모형을 위하여 이들 모형에 관한 모형선택을 편차자승합(SSE)의 합을 이용하여 시행하였고 모수의 추정을 위해서 마코브체인 몬테카를로(MCMC) 기법중에 하나인 깁스샘플링(Gibbs sampling)과 메트로폴리스 알고리즘을 이용한 근사추정 기법이 사용되었다. 수치적인 예에서는 Musa의 T1 자료를 이용하여 모수 및 신뢰도를 추정한 수치 결과론 나열하였다.

This paper presents a stochastic model for the software failure phenomenon based on a nonhomogeneous Poisson process (NHPP) and performs Bayesian inference using prior information. The failure process is analyzed to develop a suitable mean value function for the NHPP; expressions are given for several performance measure. The parametric inferences of the model using Logarithmic Poisson model, Crow model and Rayleigh model is discussed. Bayesian computation and model selection using the sum of squared errors. The numerical results of this models are applied to real software failure data. Tools of parameter inference was used method of Gibbs sampling and Metropolis algorithm. The numerical example by T1 data (Musa) was illustrated.

키워드

참고문헌

  1. 김희철, 이승주, 'RAYLEIGH와 ERLANG 추세를 가진 혼합 고장모형에 대한 베이지안 추론에 관한 연구', 응용통계연구, 제13권 제2호, pp.505-514, 2000
  2. 이상식, 김희철, 송영재, 'NHPP에 기초한 소프트웨어 신뢰도 모형에 대한 베이지안 추론에 관한 연구', 정보처리학회논문지D, 제9-D권 제3호, pp.389-398, 2002 https://doi.org/10.3745/KIPSTD.2002.9D.3.389
  3. Casella, G. and George, E. I., 'Explaining the Gibbs Sam-pler,' The American Statistician, 46, pp.167-174, 1992 https://doi.org/10.2307/2685208
  4. Chib, S ang Greenberg, E., 'Understanding the Metropo-lis-Hastings Algorithm,' The American Statistican, Vol. 49, pp.327-335, 1995 https://doi.org/10.2307/2684568
  5. cinlar, E., 'Introduction To Stochastic Process,' New Jersey, Prentice-Hall, 1975
  6. cinlar, E., 'Introduction To Stochastic Process,' New Jer-sey, Prentice-Hall, 1975
  7. Gelfand, A. E. and Smith, A. F. M., 'Sampling-Based Ap-proaches to Calculating Marginal Densities,' Journal of the American Statistical Association, 85, pp.398-409, 1990 https://doi.org/10.2307/2289776
  8. Geman, S. and Geman, D., 'Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images,' IEEE Transactions on Pattern Analysis and Machine In-telligence, 6, pp.721-741, 1984 https://doi.org/10.1109/TPAMI.1984.4767596
  9. Gelman, A. E. and Rubin D., 'Inference from Iterative Simulation Using Multiple Sequences,' Statistical Science, 7, pp.457-472, 1992 https://doi.org/10.1214/ss/1177011136
  10. Goel, A. L. and Okumoto, K, 'Time Dependent Error Detection Rate Model for Software Reliability and Other Performance Measures,' IEEE Transactions on Reliability, 28, pp.206-211, 1979 https://doi.org/10.1109/TR.1979.5220566
  11. Hossain, S. A. and Dahiya, R. C., 'Estimating the Param-eters of a Non-homogeneous Poission-Process Model for Software Reliability,' IEEE Trans. Rel., Vol.R-42, No.4, pp.604-612, 1993
  12. Kuo, L. and Yang, T. Y., 'Bayesian Computation of Soft-ware Reliability,' Journal of Computational and Graphical Statistics, 1995 https://doi.org/10.2307/1390628
  13. Kuo, L. and Yang, T. Y., 'Bayesian Computation for Non-homogeneous Poisson process in Software Reliability,' Journal of the American Statistical Association, 91, pp, 763-773, 1996 https://doi.org/10.2307/2291671
  14. Lawless, J. F., 'Statistical Models and Methods for Life-time Data,' pp.494-500, 1981
  15. Musa, J. D., Iannino, A. and Okumoto, K., 'Software Reli-ability : Measurement, Prediction, Application,' New York, McGraw Hill, 1987
  16. Okumoto, K., 'A Statistical Method for Software Quality Control,' IEEE Transactions on Software Engineering, Vol.se-11, No.12, pp.1424-1430, 1985 https://doi.org/10.1109/TSE.1985.232178
  17. Tanner, M. and Wong, W., 'The Calculation of Posterior Distributions by Data Augmentation,' (with discussion), Journal of the American Statistical Association, 81, pp. 82-86, 1987 https://doi.org/10.2307/2289457
  18. 'USER'S MANUAL, STAT/LIBRARY FORTRAN Sub-routines for statistical analysis,' IMSL, Vol.3, pp.1050-1054, 1987