Secretory Production of Recombinant Urokinase Kringle Domain in Pichia pastoris

  • Kim, Hyun-Kyung (Cancer Research Institute, Catholic Research Institute of Medical Sciences) ;
  • Hong, Yong-Kil (Department of Neurosurgery, The Catholic University of Korea) ;
  • Park, Hyo-Eun (Cancer Research Institute, Catholic Research Institute of Medical Sciences) ;
  • Hong, Sung-Hee (Laboratory of Experimental Therapeutics, Korea Institute of Radiological and Medical Sciences) ;
  • Joe, Young-Ae (Cancer Research Institute, Catholic Research Institute of Medical Sciences)
  • Published : 2003.08.01

Abstract

Human urokinase kringle domain, sharing homology with angiostatin kringles, has been shown to be an inhibitor of angiogenesis, which can be used for the treatment of cancer, rheumatoid arthritis, psoriasis, and retinopathy. Here, the expression of the kringle domain of urokinase (UK1) as a secreted protein in high levels is reported. UK1 was expressed in the methylotrophic yeast Pichia pastoris GS115 by fusion of the cDNA spanning from Ser47 to Lys135 to the secretion signal sequence of ${\alpha}-factor$ prepro-peptide. In a flask culture, the secreted UK1 reached about 1 g/l level after 120h of methanol induction and was purified to homogeneity by ion-exchange chromatography. Amino-terminal sequencing of the purified UK1 revealed that it was cleaved at the Ste13 signal cleavage site. The molecular mass of UK1 was determined to be 10,297.01 Da. It was also confirmed that the purified UK1 inhibited endothelial cell proliferation stimulated by basic fibroblast growth factor, vascular endothelial growth factor, or epidermal growth factor, in a dose-dependent manner. These results suggest that a P. pastoris sytem can be employed to obtain large amounts of soluble and active UK1.

Keywords

References

  1. Yeast v.10 Isolation and DNA sequence of the STE13 gene encoding dipeptidyl aminopiptidase Anna-Arriola,S.S.;I.Herskowitz https://doi.org/10.1002/yea.320100610
  2. Haemostasis and Thrombosis Molecular aspects of plasminogen, plasminogen activator, and plasmin Bachman,F.;A.L.Bloon(ed.);D.P.Thomas(ed.);E.G.D.Tuddenham(ed.)
  3. Yeast v.4 Proteases and the processing of precursors to secreted proteins in yeast Bussey,H. https://doi.org/10.1002/yea.320040103
  4. J. Biol. Chem. v.271 Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells Cao,Y.;R.W.Ji;D.Davidson;J.Schaller;D.Marti;S.Sohndel;S.G.McCance;M.S.O'Reilly;J.Folkman https://doi.org/10.1074/jbc.271.46.29461
  5. J. Mol. Evol. v.26 The genetic relationships between the kringle domains of human plasminogen, prothrombin, tissue plasminogen activator, urokinase, and coagulation factor XII Castellino,F.J.;J.M.Beals https://doi.org/10.1007/BF02101155
  6. Nat. Med. v.1 Angiogenesis in cancer, vascular, rheumatoid and other disease Folkman,J. https://doi.org/10.1038/nm0195-27
  7. N. Engl. J. Med. v.333 Seminars in medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis Folkman,J. https://doi.org/10.1056/NEJM199512283332608
  8. Eur. J. Cancer v.32A New perspectives in clinical oncology from angiogenesis research Folkman,J.
  9. Gene Ther. v.10 Lentivirus-mediated expression of angiostatin efficiently inhibits neobascularization in a murine proliferative retinopathy model Igarashi,T.;K.Miyake;K.Kato;A.Watanabe;M.Ishizaki;K.Ohara;T.Shimada https://doi.org/10.1038/sj.gt.3301878
  10. J. Clin. Invest. v.52 Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria Jaffe,E.A.;R.L.Nachman;C.G.Becker;R.Minick https://doi.org/10.1172/JCI107470
  11. Cell v.37 Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-alpha-factor Julius,D.;A.Brake;L.Blair;R.Kunisawa;J.Thorner https://doi.org/10.1016/0092-8674(84)90442-2
  12. Cell v.32 Yeast alpha factor is processed from a larger precursor polypeptide: The essential role of a membrane-bound dipeptidyl aminopeptidase Julius,D.;L.Blair;A.Brake;G.Sprague;J.Thomer https://doi.org/10.1016/0092-8674(83)90070-3
  13. Nat. Rev. Cancer v.2 Clinical translation of angiogenesis inhibitors Kerbel,R.;J.Folkman https://doi.org/10.1038/nrc905
  14. Bull. Korean Chem. Soc. v.20 Investigation of hydroxyl redical-induced cross-linking of peptides and its inhibition by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Kim,H.J.;S.Park
  15. Arthritis Rheum. v.46 Angiostatin gene transfer as an effective treatment strategy in murine collagen-induced arthritis Kim,J.M.;S.H.Ho;E.J.Park;W.Hahn;H.Cho;J.G.Jeong;Y.W.Le;S.Kim https://doi.org/10.1002/art.10113
  16. J. Biol. Chem. v.278 Anti-angiogenic activity of the recombinant kringle domain of urokinase and its specific entry into endothelial cells Kim,K.S.;Y.K.Hong;Y.A.Joe;Y.Lee;J.Y.Shin;H.E.Park;I.H.Lee;S.Y.Lee;D.K.Kang;S.I.Chang;S.I.Chung https://doi.org/10.1074/jbc.M212358200
  17. Protein Eng. v.10 High-level expression of bovine beta-lactoglobulin in Pichia pastoris and characterization of its physical properties Kim,T.R.;Y.Goto;N.Hirota;K.Kuwata;H.Denton;S.Y.Wu;L.Sawyer;C.A.Batt https://doi.org/10.1093/protein/10.11.1339
  18. Cancer Res. v.58 Angiostatin suppresses malignant glioma growth in vivo Kirsch,M.;J.Strasser;R.Allende;L.Bello;J.Zhang;P.M.Black
  19. J. Microbiol. Biotechnol. v.12 PC-766B' and PC-766B, 16-membered macrolide ar giogenesis inhibitors produce by Nocardia sp. RK97-56 Ko,H.R.;H.Kakeya;A.Yoshida;H.Osada
  20. J. Microbiol. Biotechnol. v.12 Apicularen A, a macrolide from Chondromyces sp., inhibits growth factor induced in vitro angiogenesis Kwon,H.J.;D.J.Kim;J.S.Shim;J.W.Ahn
  21. Biotechnol. Appl. Biochem. v.5 High-level secretion in Pichia pastoris and biochemical characterization of the recombinant kringle 2 domain of tissue-type plasminogen activator Nilsen,S.L.;M.E.Deford,M.Prorok;B.A.Chibber;R.K.Bretthauer;F.J.Castellino
  22. Nat. Med. v.2 Angiostatin induces an sustains dormancy of human primary tumors in mice O'Reilly,M.S.;L.Holmgren;C.Chen;J.Folkman https://doi.org/10.1038/nm0696-689
  23. Cell v.79 Angiostatin:A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma O'Reilly,M.S.;L.Holmgren;Y.Shing;C.Chen;R.A.Rosenthal;M.Moses;W.S.Lane;Y.Cao;E.H.Sage;J.Folkman https://doi.org/10.1016/0092-8674(94)90200-3
  24. Proc. Natl. Acad. Sci. USA v.99 Adeno-associated virus type-2 expression of pigmented epithelium-derived factor or Kringles 1-3 of angiostatin reduce retinal neovascularization Raisler,B.J.;K.I.Berns;M.B.Grant;D.Beliaev;W.W.Hauswirth https://doi.org/10.1073/pnas.122247299
  25. Protein Exper. Purif. v.20 Large-scale purification of recombinant human angiostatin Shepard,S.R.;R.Boucher;J.Johnston;R.Boerner;G.Koch;J.W.Madsen;D.Grella;B.K.Sim;J.L.Schrimsher https://doi.org/10.1006/prep.2000.1276