DOI QR코드

DOI QR Code

Energy-Based Seismic Design of Buckling-Restrained Braced Frame Using Hysteretic Energy Spectrum

이력에너지 스펙트럼을 이용한 비좌굴 가새골조의 내진설계

  • 최현훈 (성균관대학교 건축공학과) ;
  • 김진구 (성균관대학교 건축공학과)
  • Published : 2003.08.01

Abstract

In this study seismic design procedure for buckling-restrained braced frame systems was proposed using hysteretic energy spectrum and accumulated ductility spectrum constructed from single degree of freedom systems. The hysteretic energy spectra and accumulated ductility spectra corresponding to target ductility ratio were constructed first. The cross-sectional area of braces required to meet a given target displacement was obtained by equating the hysteretic energy demand to the accumulated plastic energy dissipated by braces. Twenty earthquake records were utilized to construct the spectra and to verify the validity of the design procedure. According to analysis results of three- and eight-story buckling-restrained braced frame structures designed using the proposed method, the mean values for the top story displacement correspond well with the given performance target displacements. Also, the inter-story drifts turned out to be relatively uniform over the structure height, which is desirable because uniform inter-story drifts indicate uniform damage distribution. Therefore if was concluded that the proposed energy-based method could be a reliable alternative to conventional strength-based design procedure for structures with buckling-restrained braces.

본 연구에서는 단자유도계 시스템에서 작성한 이력에너지 스펙트럼과 누적된 변위 연성비 스펙트럼을 이용하여 비좌굴 가새골조의 내진설계법을 제안하였다. 먼저 목표 연성비에 해당하는 이력에너지 스펙트럼과 누적된 연성비 스펙트럼을 작성하였다. 주어진 목표 변위를 만족하기 위하여 필요한 가새의 단면적은 이력에너지 요구량과 가새에 의하여 소산된 누적 소성에너지를 같다고 하여 산정하였다. 스펙트럼을 작성하고 설계절차의 유효성을 검증하기 위하여 20개의 지진기록을 이용하였다. 제안된 방법에 따라 설계된 3층과 8층 비좌굴 가새골조의 해석결과에 따르면 최상층 변위의 평균값이 성능 목표 변위에 잘 부합됨을 알 수 있다. 또한 층간변위는 구조물 높이에 따라 비교적 일정하였는데 이것은 손상 분포가 일정하기 때문에 바람직하다. 그러므로 제안된 에너지 설계법은 기존 강도설계법의 대안으로 비좌굴 가새골조의 신뢰할만한 설계법이라고 할 수 있다.

Keywords

References

  1. Riddell, R. and Garcia, J. E., "Hysteretic energy spectrum and damage control," Earthquake Engineering and Structural Dynamics, VoI. 30, No. 12, 2001, pp. 1791-1816. https://doi.org/10.1002/eqe.93
  2. Wong. K. K. F. and Pang. M., "Generation and application of energy density spectra," Seventh U.S. National Conference on Earthquake Engineering, Boston, Massachusetts, 2002.
  3. Estes, K. R. and Anderson, J. C, "Hysteretic energy demands in multistory buildings," Seventh U.S. National Conference on Earthquake Engineering, Boston, Massachusetts, 2002.
  4. Akbas, B., Shen, L. and Hao, H., "Energy approach in perlormance-based seismic design of steel Irorrent resisting frames for basic safety objective," The Structural Design of Tall Buildings, Vol. 10, 2001, pp. 193-217. https://doi.org/10.1002/tal.172
  5. Leelataviwat, S., Gael, S. C, and Stojadinovic, B., "Energy-based seismic design of structures using yield mechanism and target drift," Journal of Structural En-gineering, Vol. 128, No. 8, 2002, pp. 1046-1054. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1046)
  6. Olou, C. C. and Uang. C. M., "A procedure for evaluating seismic energy demand of framed structures," Earthquake Engineering and Structural Dynamics, Vol. 32, No. 2, 2003, pp. 229-244. https://doi.org/10.1002/eqe.221
  7. Chopra, A. K, Dynamics of Structures, Prentice Hall, 1995.
  8. Somerville, P., Smith, H, Puriyamurthala, S., and Sun, J., "Development of Ground Motion Time Histories for Phase 2 of the FEMA/SAC Steel Project," SAC Joint Venture, SAC/BD-97/04, 1997.
  9. 최현훈,김진구, "좌굴이 방지된 가새가 설치된 철골조 건물의 에너지 요구량", 한국지진공학회 논문집, 제7권, 2호, 2003, pp. 29-37. https://doi.org/10.5000/EESK.2003.7.2.029
  10. 대한건축학회, 건축물 하중기준 및 해설, 2000.
  11. Black, C, Makris, N., and Aiken, I., "Component testing. stability analysis and characterization of buckling restrained braces," Report No. PEER-2002/08, Pacific Earthquake Engineering Research Center, University of California at Berkeley, 2002.
  12. Tsai, K. C and Li, J. W., DRAIN2D+, "A general purpose computer program for static and dynamic analyses of inelastic 2D structures supplemented with a graphic processor," Report No. CEER/R86-07, National Taiwan University, Taipei, Taiwan, 1997.