DOI QR코드

DOI QR Code

진동성형용 ρ-알루미나결합 알루미나 캐스터블 내화재료의 제조와 특성

Preparation and Properties of ρ-alumina Bonded Alumina Vibrated Castable Refractory

  • 천승호 (경남대학교 신소재공학부) ;
  • 전병세 (경남대학교 신소재공학부)
  • 발행 : 2003.08.01

초록

진동성형용 캐스터블을 제조하기 위하여 p-알루미나를 주결합제로 사용하였으며 결합강도를 증진시키기 위하여 나노크기의 점토를 첨가하는 등 특별한 결합기구를 도입하여 기존 캐스터블보다 고밀도, 저기공율 그리고 높은 강도를 얻을 수 있었다. 그리고 적은 수분첨가로 치밀한 캐스터블을 제조할 수 있었다. 캐스터블의 매트릭스 부분을 잘 조절함으로서 치수 안전성을 확보한 기계적 강도 및 침식저항 특성이 개선되었다. 150$0^{\circ}C$에서 열처리한 후의 꺽임강도와 압축강도는 각각 92.34 kgf/$ extrm{cm}^2$ 및 370 kgf/$\textrm{cm}^2$ 이고 뮬라이트 형성을 위한 활성화에너지는 11.47 kcal/mo1이다.

The special binding mechanism developed provides higher density, lower porosity and higher strengths compared with conventional castables. $\rho$-alumina was employed as a binder materials and nano-sized clay colloidal was added to enhance the drying strength preparing for the alumina vibrated castable. Lower water requirement for casting results in a denser product. The mechanical properties with dimensional stability and corrosion resistance behaviors have been improved by controlling the matrix compositions of the castable. The modulus of rupture and compressive strength after heat treatment at 150$0^{\circ}C$ are 92.34 kgf/$\textrm{cm}^2$ and 370 kgf/$\textrm{cm}^2$ respectively. The activation energy of mullite formation is 11.47 kcal/mol.

키워드

참고문헌

  1. Adv. in Ceram. v.13 Aggregate Distribution Effects on the Mechanical Properties and Thermal Shock Behavior of Monolithic Refractory Systems J.Homeny;R.C.Bradt
  2. Refractories(Japan) v.44 no.5 Wear Mechanism of Castable for Steel Ladel Y.Oguchi;J.Mori
  3. Refractories(Japan) v.40 no.5 Development of High Alumina Castable for Steel Ladle(Part 1. A Few Results on Spinel Formation in the Alumina-Magnesia Castable) B.Nagai;O.Matumoto;T.Isobe
  4. J. Kor. Ceram. Soc. v.17 no.2 A Study on Steel Wire Fiber Reinforced Refractory Castable K.C.Park;Y.S.Choi;M.H.Han;Y.J.Chang;K.W.Park
  5. J. Kor. Ceram. Soc. v.36 no.12 Preparation and Properties of Mullite Bonded Alumina Castable S.H.Cheon;K.H.Hwang;B.S.Jun
  6. Adv. in Ceram. v.13 Calcium Aluminate Cements for Emerging Castable Technology G.Maczura;J.E.Koparda;F.J.Rohr
  7. Refractories(Japan) v.40 no.4 Low Cement Bonded Castable Refractories T.Eguchi;I.Takita;J.Yoshitomi;S.Kiritani;M.Sato
  8. Am. Ceram. Soc. Bull. v.81 no.4 Citric and Polyacrylic Acids as Dispersants for High Alumina Refractory Castables A.R.Studart;Z.Gallo;V.C.Pandolfelli
  9. Am. Ceram. Soc. Bull. v.78 no.5 Rheological Design of Zero-cement Self-flow Castables A.R.Studart;W.Zhong;V.C.Pandolfelli
  10. Am. Ceram. Soc. Bull. v.80 no.5 How PSD Affects Permeability of Castables M.D.Innocentini;A.R.Studart;R.G.Pileggi;V.C.Pandolfelli
  11. J. Coll. Interface. Sci. v.150 no.1 Properties of Activated Alumina Obtained by Flash Calcination of Gibbsite N.Jovanovic;T.Novakovic;J.Janackovic;A.T.Baricevic https://doi.org/10.1016/0021-9797(92)90265-N
  12. J. Mat. Sci. v.28 Morphological and Phase Change of Transition Alumina During their Rehydration Z.J.Galas;S.Janiak;W.Mista;J.Wrzyszcz;M.Zawadzki https://doi.org/10.1007/BF00367564
  13. J. Kor. Ceram. Soc. v.36 no.12 Preparation and Properties of Mullite Bonded Alumina Castable S.H.Cheon;K.H.Hwang;B.S.Jun
  14. Adv. in Ceram. v.13 High Technology Castables E.P.Weaver;R.W.Talley;A.J.Engel
  15. J. Kor. Ceram. Soc. v.40 no.7 Effects of the Ultrafine and Nano-sized Clay on Rheological Behavior of the Matrix of ρ-alumina Bonded Castable S.H.Cheon;B.S.Jun https://doi.org/10.4191/KCERS.2003.40.7.632