임의의 심볼 집합 상의 수열의 선형복잡도와 GF(p)상의 특성다항식을 갖는 GF($p^k$)상의 수열 생성에 관한 연구

Linear Complexities of Sequences over Unknown Symbol Sets and Constructions of Sequences over CF($p^k$) whose Characteristic Polynomials are over GF($p^{k}$ )

  • Hong, Yun-Pyo (Dept.of Electric Electronics Engineering, Graduate School of Yonsei University) ;
  • Eun, Yu-Chang (Dept.of Electric Electronics Engineering, Graduate School of Yonsei University) ;
  • Kim, Jeong-Heon (Samsung Electronics Corporation) ;
  • Song, Hong-Yeop (Dept.of Electric Electronics Engineering, Graduate School of Yonsei University)
  • 발행 : 2003.05.01

초록

본 논문에서는 임의의 심볼 집합 상의 수열의 선형복잡도를 정의한다. 또한 본 논문에서는 기저의 선택과 상관없이 자신의 GF($p^{k}$ ) 상의 R-tuple 수열이 자신과 같은 특성다항식을 갖는 $p^{R}$-ary 수열의 특성을 밝히며 이는 결과적으로 GF(p) 상의 특성다항식을 갖는 $p^{+}$ -ary 수열의 생성을 가능하게 한다. 마지막으로 심볼이 GF(p) 상의 R-tuple로 표현될 때 기저의 선택과 무관하게 유일한 특성다항식을 갖는 $p^{R}$-ary 수열의 특성을 밝힌다.

We propose an appropriate approach of defining the linear complexities (LC) of sequences over unknown symbol set. We are able to characterize those p-ary sequences whose R-tuple versions now eve. GF($p^{R}$ ) have the same characteristic polynomial as the original with respect to any basis. This leads to a construction of $p^{R}$ -ary sequences whose characteristic polynomial is essentially over GF(p). In addition, we can characterize those $p^{R}$ -ary sequences whose characteristic polynomials are uniquely determined when symbols are represented as R-tuples over GF(p) with respect to any basis.

키워드

참고문헌

  1. J. Comb. Theory, Ser. A v.33 On the Complexity of de Bruijn Sequences A.H.Chan;R.A.Games;E.L.Key
  2. Shift Register Sequences(Revised Edition) S.W.Golomb
  3. Finite Fields, Encyclopedia of Mathematics and Its Applications v.20 R.Lidl;H.Niederreiter
  4. IEEE Trans. Inform. Theory v.IT-15 Shift-Register Synthesis and BCH decoding J.L.Massey
  5. Siam J. Comp. v.14 no.3 Shift Register Synthesis (modulo m) J.A.Reeds;N.J.A.Sloane
  6. Spread Spectrum Communications Handbook(revised edition) M.K.Simon;J.K.Omura;R.A.Scholtz;B.K.Levitt
  7. IEEE Trans. Inform. Theory v.35 no.1 Relationships Between m-Sequences over GF(q) and GF($q^ m$) W.J.Park;J.J.Komo
  8. IEEE Trans. Communications v.42 no.8 Synthesis and Uniqueness of m-Sequences over CF(qⁿ) as n-Phase Sequences over CF(q) G.Gong;G.Z.Xiao