초록
본 논문에서는 공간 영역의 제약 정보를 이용한 적응 영상 복원 방식을 제안한다. 공간 영역의 제약정보로는 국부 정보의 평균, 분산 및 최대 값을 이용하였으며, 반복 기법을 이용하여 매 반복 해에서 얻어진 복원 영상으로부터 상기 제약 정보를 설정하게 되고, 위의 제약 정보는 임의의 입력 값에 의해 정의되는 매개 변수와 더불어 복원 영상의 국부 완화 정도를 결정하게 된다. 제안된 방식을 이용하여 복원영상을 얻기 위해 비 적응 복원 방식보다 빠른 수렴속도를 갖게 됨을 알 수 있으며, 국부적으로 제어된 완화 정도를 지닌 복윈 영상을 얻을 수 있었다. 제안된 방식의 성능은 실험을 통해서 확인할 수 있었다.
In this paper, we propose a spatially adaptive image restoration algorithm using local statistics. The local mean, variance, and maximum values are utilized to constrain the solution space, and these parameters are computed at each iteration step using partially restored image. A parameter defined by the user determines the degree of local smoothness imposed on the solution. The resulting iterative algorithm exhibits increased convergence speed when compared to the non-adaptive algorithm. In addition, a smooth solution with a controlled degree of smoothness is obtained. Experimental results demonstrate the capability of the proposed algorithm.