A Differential Index Assignment Scheme for Tree-Structured Vector Quantization

나무구조 벡터양자화 기반의 차분 인덱스 할당기법

  • 한종기 (세종대학교 정보통신공학과 멀티미디어 신호처리 연구실) ;
  • 정인철 (세종대학교 정보통신공학과 멀티미디어 신호처리 연구실)
  • Published : 2003.02.01

Abstract

A differential index assignment scheme is proposed for the image encoding system in which a variable-length tree-structured vector quantizer is adopted. Each source vector is quantized into a terminal node of VLTSVQ and each terminal node is represented as a unique binary vector. The proposed index assignment scheme utilizes the correlation between interblocks of the image to increase the compression ratio with the image quality maintained. Simulation results show that the proposed scheme achieves a much higher compression ratio than the conventional one does and that the amount of the bit rate reduction of the proposed scheme becomes large as the correlation of the image becomes large. The proposed encoding scheme can be effectively used to encode R images whose pixel values we, in general, highly correlated with those of the neighbor pixels.

가변길이 나무구조 벡터양자화기(VLTSVQ : variable-length tree-structured vector quantizer)를 기반으로 하는 영상 부호화 방식인 차분 인덱스(DI : Differential index) 할당기법을 제안하였다. 각 소스벡터는 VLTSVQ의 단말 노드로 양자화가 되어지고, 각 단말 노드는 유일한 이진 벡터로 표현된다. 제안한 방법은 영상의 화질은 유지하면서 압축률을 개선하기 위해 이웃하는 영상 블록들간의 상관성을 이용하였다. 모의실험을 통하여 제안한 방법이 기존 방법들에 비해 매우 높은 압축률을 보였으며, 화소간의 상관성이 높은 영상에 대해서는 63.2%의 발생 비트율 감소를 확인하였다. 그리고 영상내의 이웃블록들간 상관성이 커질수록 더 큰 비트율이 감소됨을 보였다. 제안한 부호화 기법은 일반적으로 이웃된 화소들간에 높은 상관성을 가진 MR(magnetic resonance)영상 부호화에 효율적으로 사용될 수 있다.

Keywords

References

  1. IEEE Trans.Med. Imag. v.14 A predictive classified vector quantizer and its subjetive quality evaluation for X-ray CT images H.Lee;Y.Kim;E.A.Riskin;A.H.Rowberg;M.S.Frank
  2. IEEE Trans. Med. Imag. v.15 Medical image compression by using threedimensional wavelet transform J.Wang;H.K.Huang
  3. IEEE Trans. Med. Imag. v.12 Alternative to the discrete cosine transform for irreversible tomographic image compression J.D.Villasenor
  4. IEEE Trans. Med. Imag. v.11 A combined-transform coding scheme for medical images Y.Q.Zhang;M.H.Loew;R.L.Pickholtz
  5. IEEE Trans. Med. Imag. v.15 A mixed transform approach for efficient compression of medical images A.Ramaswamy;W.B.Mikhael
  6. IEEE Trans. Med. Imag. v.13 Near-lossless compression of medical images through entropy-coded DPCM K.Chen;T.V.Ramabadran
  7. IEEE Trans. Med. Imag. v.16 A segmentation-based lossless image coding method for high-resolution medical image compression L.Shen;R.M.Rangayyan
  8. Radiology v.190 Thoracic CT images:Effect of lossy image compression on diagnostic accuracy P.C.Cosman;H.C.Davidson;C.J.Bergin;C.J.Tseng;L.E.Moses;E.A.Riskin;R.A.Olshen;R.M.Gray
  9. IEEE Trans. Med. Imag. v.12 Tree-structured vector quantization of CT chest scans:image quality and diagnostic accuracy P.C.Cosman;C.Tseng;R.M.Gray;R.A.Olshen;L.E.Moses;H.C.Davidson;C.J.Berin;E.A.Riskin
  10. IEEE Trans. Med. Imag. v.9 Variable rate vector quantization for medical imag compression E.A.Riskin;T.Lookabaugh;P.A.Chou;R.M.Gray
  11. IEEE Trans. Image Processing v.4 Pruned tree-structured vector quantization of medical images with segmentation and improved prediction G.Poggi;R.A.Olshen
  12. IEEE Trans. Inform. Theory v.35 Optimal pruning with applications to tree-structured source coding and modeling P.A.Chou;T.Lookabaugh;R.M.Gray
  13. Wadsworth Statics/Probability Series Classification and regression trees L.Breiman;J.H.Fredman;R.A.Olshen;C.J.Stone
  14. Vector Quantization and Signal Compression A.Gersho;R.M.Gray
  15. IEEE Trans. Signal Processing v.39 A greedy tree growing algorithm for the design of variable rate vector quantizer E.A.Riskin;R.M.Gray
  16. IEEE Trans. Med. Imag. v.10 Reversible interframe compression of medical images;A comparison of decorrelation methods P.Roos;M.A.Viergever
  17. IEICE Trans. Inform. Syst. v.79 A method of making lookuptables for Hibert scans S.Kamata;M.Niimi;E.Kawaguchi
  18. IEICE Trans. Inform. Syst. v.76 An implementation of the Hilbert scanning algorithm and its application to data compression S.Kamata;R.O.Eason;E.Kawaguchi