초록
본 논문에서는 스테레오 정합을 위한 특징으로 웨이블릿의 이동성(shift ability)을 이용한 윈도우 웨이블릿 기반 스테레오 정합방법을 제안하였다. 기존의 정합방법에서 사용된 전 영상에 대한 웨이블릿 분해는 웨이블릿의 이동성 유지가 이루어지지 않아서 정합 정확도가 떨어진다. 그래서 웨이블릿의 이동성을 신뢰성 있는 정합정보로 사용하기 위해 윈도우로 전체 파형의 일부를 표본화하고 웨이블릿 분해를 수행하여 기준신호와 이동된 신호의 부대역 정보 사이의 상관도(cross-correlation)를 정합정보로 이용하였다. 대역별 상관도는 얻어진 4개의 부대역의 대역별 가중치가 고려되어 계산된다. 제안한 방법은 주파수 대역별 계층적인 정합과 양방향 정합과정을 통해 영상의 경계부분, 동일한 형태의 반복, 잡음(white noise)등이 포함된 영상에서의 오정합을 줄일 수 있었으며 특징정보가 부족한 부분에서의 정합도 개선할 수 있었다.
In this paper, a wavelet-based stereo matching algorithm to obtain an accurate disparity map in wavelet transformed domain by using a shift ability property, a modified wavelet transform, the similarities for their sub-bands, and a hierarchical structure is proposed. New approaches for stereo matching by lots of feature information are to utilize translation-variant results of the sub-bands in the wavelet transformed domain because they cannot literally expect translation invariance in a system based on convolution and sub-sampling. After the similarity matching for each sub-band, we can easily find optimal matched-points because the sub-bands appearance of the shifted signals is definitely different from that of the original signal with no shift.