인체 전립선 암세포에서 Alkylating Agent인 N-methyl-N'-nitro- N-nitrosoguanidine에 의한 Apoptosis유발

Induction of Apoptosis by N-methyl-N'-nitro-N-nitrosoguanidine, an Alkylating Agent, in Human Prostate Carcinoma Cells

  • 박철 (동의대학교 한의과대학 생화학교실, 부산대학교 자연과학대학 생물학과) ;
  • 최병태 (동의대학교 한의과대학 해부학교실 및 한의학연구소) ;
  • 이원호 (부산대학교 자연과학대학 생물학과) ;
  • 최영현 (동의대학교 한의과대학 생화학교실)
  • Park, Cheol (Department of Biochemistry, Dong-Eui University College of Oriental Medicine, and Research Institute of Oriental Medicine, Department of Biology, Busan National University) ;
  • Choi, Byung-Tae (Department of Anatomy, Dong-Eui University College of Oriental Medicine and Research Institute of Oriental Medicine) ;
  • Lee, Won-Ho (Department of Biology, Busan National University) ;
  • Choi, Yung-Hyun (Department of Biochemistry, Dong-Eui University College of Oriental Medicine, and Research Institute of Oriental Medicine)
  • 발행 : 2003.06.01

초록

Alkylating agents form alkylated base adducts in the DNA and cause DNA lesions leading to cell killing. In this study, we investigated the mechanism of apoptosis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in PC-3 and DU145 human prostate carcinoma cell lines. MNNG treatment resulted in the inhibition of cell proliferation in a concentration-dependent manner to a similar extent in both cell lines. This anti-proliferative effect of PC-3 and DU145 cells by MNNG was associated with morphological changed such as membrane shrinking, cell rounding up and formation of apoptotic bodies. MNNG treatment also induced a proteolytic cleavage of specific target proteins such as poly(ADP-ribose) polymerase (PARP) and $\beta$-catenin proteins in DU145 cells but in PC-3 cells. Furthermore, we observed an increase of proapoptotic protein Bax family expression and a decrease of antiapoptotic protein Bcl-2 family by MNNG treatment in a concentration-dependent manner MNNG also induced a proteolytic activation of caspase-3 and -9, which is believed to play a central role in the apoptotic signaling pathway.

키워드

참고문헌

  1. J. Biol. Chem. v.277 ATM is activated in response to N-methyl-N'-nitro-N-nitrosoguanidine-induced DNA alkylation Adamson,A.W.;Kim,W.J.;Shangary,S.;Baskaran,R.;Brown,K.D. https://doi.org/10.1074/jbc.M204409200
  2. Exp. Cell. Res. v.256 The Bcl-2 protein family Antonsson,B.;Martinou,J.C. https://doi.org/10.1006/excr.2000.4839
  3. J. Clin. Invest. v.98 Competency in mismatch repair prohibits clonal expansion of cancer cells treated with N-methyl-N'-nitro-N-nitrosoguanidine Carethers,J.M.;Hawn,M.T.;Chauhan,D.P.;Luce,M.C.;Marra,G.;Koi,M.;Boland,C.R. https://doi.org/10.1172/JCI118767
  4. Cell Mol Biol. Res. v.40 Apoptosis and the cell cycle Chiarugi,V.;Magnelli,L.;Clinelli,M.;Basi,G.
  5. Exp. Mol. Med. v.33 Research technics for the cell cycle study Choi.Y.H. https://doi.org/10.1038/emm.2001.3
  6. Int. J. Oncol. v.18 Apoptotic activity of novel bile acid derivatives in human leukemic T cells through the activation of caspases Choi,Y.H.;Im,E.O.;Suh,H.S.;Jin.Y.E.;Lee,W.H.;Yoo,Y.H.;Kim,K.W.;Kim,N.D.
  7. J. Biol. Chem. v.272 Regulation of cyclin D1 by calpain protease Choi,Y.H.;Lee,S.J.;Nguyen,P.;Jang,J.S.;Lee,J.;Wu,M.L.;Takano,E.;Maki,M.;Henkart,P.A.;Trepel,J.B. https://doi.org/10.1074/jbc.272.45.28479
  8. Jpn. J. Cancer Res. v.91 p53-independent induction of p21 (WAF1/CIP1), reduction of cyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells Choi,Y.H.;Lee,W.H.;Park,K.Y.;Zhang,L. https://doi.org/10.1111/j.1349-7006.2000.tb00928.x
  9. Proc. Natl. Acad. Sci. v.96 hMutSalpha- and hMutLalpha-dependent phosphorylation of p53 in response to DNA methylator damage Duckett,D.R.;Bronstein,S.M.;Taya,Y.;Modrich,P. https://doi.org/10.1073/pnas.96.22.12384
  10. Toxicology v.163 Cell cycle was disturbed in the MNNG-induced initiation stage during in vitro two-stage transformation of Balb/3T3 cells Fang,M.Z.;Mar,W.C.;Cho,M.H. https://doi.org/10.1016/S0300-483X(01)00400-0
  11. Int. J. Biochem. Cell. Biol. v.31 Apoptosis-associated cleavate of β-catenin in human colon cancer and rat hepatoma cells Fukuda,K. https://doi.org/10.1016/S1357-2725(98)00119-8
  12. J. Biol. Chem. v.274 Survival and proliferation of cells expressing caspase-uncleavable Poly(ADP-ribose) polymerase in response to death-inducing DNA damage by an alkylating agent Halappanavar,S.S.;Rhun,Y.L.;Mounir,S.;Martins,L.M.;Huot,J.;Earnshaw,W.C.;Shah,G.M. https://doi.org/10.1074/jbc.274.52.37097
  13. Blood Rev. v.6 Mechanisms of action of, and modes of resistance to, alkylating agents used in the treatment of haematological malignancies Hall,A.G.;Tilby,M.J. https://doi.org/10.1016/0268-960X(92)90028-O
  14. Cancer Res. v.55 Evidence for a connection between the mismatch repair system and the G2 cell cycle checkpoint Hawn,M.T.;Umar,A.;Carethers,J.M.;Marra,G.;Kunkel,T.A.;Boland,C.R.;Koi,M.
  15. Proc. Natl. Acad. Sci. v.96 Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents Hickman,M.J.;Samson,L.D. https://doi.org/10.1073/pnas.96.19.10764
  16. Apoptosis v.6 XIAP: apoptotic brake and promising therapeutic target Holcik,M.;Gibson,H.;Komeluk,R.G. https://doi.org/10.1023/A:1011379307472
  17. J. Pathol. v.199 Apoptosis and melanoma: molecular mechanisms Hussein,M.R.;Haemel,A.K.;Wood,G.S. https://doi.org/10.1002/path.1300
  18. Mutat. Res. v.500 SN2 DNA-alkylating agent-induced phosphorylation of p53 and activation of p21 gene expression Jaiswal,A.S.;Narayan,S. https://doi.org/10.1016/S0027-5107(01)00296-2
  19. Cancer Metastasis Rev. v.8 Cell adhesion molecules in the development and progression of malignant melanoma Johnson,J.P.
  20. Proc. Natl. Acad. Sci. v.95 Bax directly induces release of cytochrome c from isolated mitochondria Jurgensmeier,J.M.;Xie,Z.;Deveraux,Q.;Ellerby,L.;Bredesen,D.;Reed,J.C. https://doi.org/10.1073/pnas.95.9.4997
  21. Proc. Natl. Acad. Sci. v.90 An alkylation-tolerant, mutator human cell line is deficient in strand-specific mismatch repair Kat,A.;Thilly,W.G.;Fang.W.H.;Longley,M.J.;Li,G.M.;Modrich,P. https://doi.org/10.1073/pnas.90.14.6424
  22. Cancer Res. v.53 Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis Kaufmann,S.H.;Desnoyers,S.;Ottaviano,Y.;Davidson,N.E.;Poirier,G.G.
  23. Carcinogenesis v.21 Diverse chemical carcinogens fail to induce G(1) arrest in MCF-7 cells Khan,Q.A.;Dipple,A. https://doi.org/10.1093/carcin/21.8.1611
  24. Science v.275 The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis Kluck,R.M.;Bossy-Wetzel,E.;Green,D.R.;Newmeyer,D.D. https://doi.org/10.1126/science.275.5303.1132
  25. Cancer Invest. v.13 Current chemotherapy and future directions in research for the treatment of advanced hormone-refractory prostate cancer Kreis,W. https://doi.org/10.3109/07357909509094465
  26. Nature v.371 Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE Lazebnik,Y.A.;Kaufmann.S.H.;Desnoyers,S.;Poirier,G.G.;Earnshaw,W.C. https://doi.org/10.1038/371346a0
  27. Acta. Biochim. Pol. v.46 Mitochondria, oxidative stress, and antioxidant defences Lanaz,G.;Bovina,C.;Formiggini,G.;Castelli,G.P.
  28. Semin. Nephrol. v.18 Necrosis and apoptosis in acute renal failure Lieberthal,W.;Koh,J.S.;Levine,J.S.
  29. Cell v.88 Apopotosis by death factor Nagata,S. https://doi.org/10.1016/S0092-8674(00)81874-7
  30. Br. J. Cancer v.85 DNA damage-induced cell cycle checkpoints involve both p53-dependent and -independent pathways: role of telomere repeat binding factor 2 Narayan,S.;Jaiswal,A.S.;Multani,A.S.;Pathak,S. https://doi.org/10.1054/bjoc.2001.2002
  31. J. Biol. Chem. v.276 p53 Phosphorylation at serine 15 is required for transcriptional induction of the plasminogen activator inhibitor-1 (PAI-1) gene by the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine Parra,M.;Jardi,M.;Koziczak,M.;Nagamine,Y.;Munoz-Canoves,P. https://doi.org/10.1074/jbc.M103735200
  32. Exp. Cell Res. v.257 The human cyclin B1 protein modulates sensitivity of DNA mismatch repair deficient prostate cancer cell lines to alkylating agents Rasmussen,L.J.;Rasmussen,M.;Lutzen.A.;Bisgaard,H.C.;Singh,K.K. https://doi.org/10.1006/excr.2000.4865
  33. Oncogene v.17 Bcl-2 family proteins Reed,J.C. https://doi.org/10.1038/sj.onc.1202591
  34. Nature v.391 Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c Rosse,T.;Olivier,R.;Monney,L.;Rager,M.;Conus,S.;Fellay,I.;Jansen,B.;Borner,C. https://doi.org/10.1038/35160
  35. Rev. Reprod v.5 Cadherins: crucial regulators of structure and function in reproductive tissues Rowlands,T.M.;Symonds,J.M.;Farookhi,R.;Blaschuk,O.W. https://doi.org/10.1530/ror.0.0050053
  36. Nat. Rev. Mol. Cell. Biol. v.3 IAP proteins; blocking the road to death's door Salvesen,G.S.;Duckett,C.S. https://doi.org/10.1038/nrm830
  37. Eur. J. Biochem. v.254 Apoptosis signaling by death receptors Schulze-Osthoff,K.;Ferrai,D.;Los,M.;Wesselborg,S.;Peter,M.E. https://doi.org/10.1046/j.1432-1327.1998.2540439.x
  38. Pathol. Annu. v.17 Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance Searle,J.;Kerr,J.F.;Bishop,C.J.
  39. Oncogene v.12 Oncogenic transformation of HPV-immortalized human oral keratinocytes is associated with the genetic instability of cells Shin,K.H.;Tannyhill,R.J.;Liu,X.;Park,N.H.
  40. J. Biol. Chem. v.275 Apoptosis-induced cleavage of β-catenin by caspase-3 results in proteolytic fragments with reduced transactivation potential Steinhusen,U.;Badock,V.;Bauer,A.;Behrens,J.;Wittman-Liebold,B.;Dorken,B.;Bommert,K. https://doi.org/10.1074/jbc.M001458200
  41. Cell v.79 DNA damage can induce apoptosis in proliferating lymphoid cells via p53-independent mechanisms inhibitable by Bcl-2 Strasser,A.;Harris,A.W.;Jacks,T.;Cory,S. https://doi.org/10.1016/0092-8674(94)90201-1
  42. Cell v.81 Yama/CPP32 β, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase Tewari,M.;Quan,L.T.;O'Rourke,K;Desnoyers,S.;Zeng,Z.;Beidler,D.R.;Poirier,G.G.;Salvesen,G.S.;Dixit,V.M. https://doi.org/10.1016/0092-8674(95)90541-3
  43. Prostate v.47 Widely used prostate carcinoma cell lines share common origins van Bokhoven,A.;Varella-Garcia,M.;Korch,C.;Hessels,D.;Miller,G.J. https://doi.org/10.1002/pros.1045
  44. Crit. Rev. Toxicol. v.24 Intragenomic heterogeneity of DNA damage formation and repair: a review of cellular responses to covalent drug DNA interaction Wassermann,K. https://doi.org/10.3109/10408449409017921
  45. Br. J. Surg. v.87 Ecadherin-catenin cell-cell adhesion complex and human cancer Wijnhoven,B.P.;Dinjens,W.N.;Pignatelli,M. https://doi.org/10.1046/j.1365-2168.2000.01513.x
  46. Int. Rev. Cytol. v.68 Cell death: the significance of apoptosis Wyllie,A.H.;Kerr,J.F.;Currie,A.R. https://doi.org/10.1016/S0074-7696(08)62312-8
  47. J. Biol. Chem. v.276 Activation of a p53-independent, sphingolipid-mediated cytolytic pathway in p53-negative mouse fibroblast cells treated with Nmethyl-N-nitro-N-nitrosoguanidine Yang,J.;Duerksen-Hughes,P.J. https://doi.org/10.1074/jbc.M100729200
  48. Pharmacol. Ther. v.92 The machinery of programmed cell death Zimmermann,K.C.;Bonzon,C.;Green,D.R. https://doi.org/10.1016/S0163-7258(01)00159-0