DOI QR코드

DOI QR Code

수중의 Pyrene, Chrysene 및 Benzo[a]pyrene의 광분해(II)

Photodegradation of Pyrene, Chrysene and Benzo[a]pyrene in Water (II)

  • 감상규 (제주대학교 토목환경공학전공) ;
  • 김지용 (제주대학교 토목환경공학전공) ;
  • 주창식 (부경대학교 화학공학부) ;
  • 이민규 (부경대학교 화학공학부)
  • 발행 : 2003.07.01

초록

The photodegradations of pyrene, chrysene and benzo[a]pyrene that were similar in structure among polycyclic aromatic hydrocarbons (PAHs) were investigated with a low-pressure mercury lamp(the wavelength of 253.7 nm and UV output of 1.35${\times}$10$\^$-3/J/s). The optimum concentrations of TiO$_2$ and H$_2$O$_2$ on the photodegradation of pyrene, chrysene and benzo[a]pyrene were 1 g/L and 1.5${\times}$10$\^$-3/ M, respectively. By these optimum concentrations, their rates increased with increasing the concentration of TiO$_2$ and H$_2$O$_2$ because the amounts of OH radical formed increased, but for the higher concentrations than the optimum, their rates decreased with increasing those concentrations because the white turbidity phenomena occurs in case of TiO$_2$ and H$_2$O$_2$ acts as an OH radical inhibitor. The photodegradation rates among the photodegradation processes such as UV, UV/TiO$_2$, UV/H$_2$O$_2$, and UV/H$_2$O$_2$/TiO$_2$ decreased in the following sequences.: UV/H$_2$O$_2$/TiO$_2$> UV/H$_2$O$_2$> UV/TiO$_2$> UV.

키워드

참고문헌

  1. Smeet, J., 1982, EEC directive on new chemicals, J. Water Pollut. Control Fed., 81(2), 241-244.
  2. Eisler, R., 1987, Polycyclic aromatic hydrocarbons hazard to fish, wildlife, and invertebrates, U.S. Fish and Wild Service, Washington D.C. Biol. Rept., 85pp.
  3. Hoodftman, R.N., 1981, Inventory of data on environmental carcinogens, PAHs and N-Heterocycles. Report to the EC-JRC, The Netherlands, TNO CI, 88pp.
  4. McElroy, A.E., J.W. Farrington and J.M. Teal, 1989, Bioavailability of polycyclic aromatic hydrocarbons in the aquatic environment. In Metabolism of polycyclic aromatic hydrocarbons in aquatic environment, CRC press Inc. Boca Raton, Florida, 2-33pp.
  5. Stein, J.W. and L.E., Reichert, 1990, Overview of studies on liver carcinogenesis in English sole from Puget Sound; Evidence for a xenobiotic chemical etiology. II: Biochemical studies, Sci. Total Environ., 94, 51-69. https://doi.org/10.1016/0048-9697(90)90364-Z
  6. Malaney, G.W., P.A. Lutin, J.J. Cibulka and L.H. Hickerson, 1968, Resistance of carcinogenic organic compounds to oxidation by activated sludge, J. Water Pollut. Control Fed., 39, 2020-2028.
  7. Borneff, J., 1969, Elimination of carcinogenic polycyclic aromatic compounds during water purification, GWF, Gas-Wasserfach., 110, 29-34.
  8. Il'nitskii, A.P., 1969, Experimental investigation of the elimination of carcinogenic hydrocarbons from water during its clarification and disinfection, Gig. Sanit., 34, 26-29.
  9. Matthews, R.W., 1986, Photo-oxidation of orfanic material in aqueous suspensions of titanium dioxide, Wat. Res., 20, 569-578. https://doi.org/10.1016/0043-1354(86)90020-5
  10. 최종인, 1997, TiO2를 현탁시킨 반응기에서 포름산의 광화학적 분해와 신경망을 이용한 전산모사, 연세대학교 석사학위논문. 63pp.
  11. 김영도, 2000, 광촉매의 세계, 대영사. 62-108pp.
  12. Rivas, F.J., F.J. Beltrán and B. Acedo, 2000, Chemical and photochemical degradation of acenaplthylene. intermediate identification, J. Hazardous material, 75, 89-98. https://doi.org/10.1016/S0304-3894(00)00196-5
  13. Yao, J.J., Z.H. Huang and S.J. Masten, 1998a, The ozonation of benzo[A]anthracene: pathway and product identification, Wat. Res., 32(11), 3235-3244. https://doi.org/10.1016/S0043-1354(98)00094-3
  14. Yao, J.J., Z.H. Huang and S.J. Masten, 1998b, The ozonation of pyrene: pathway and product identification, Wat. Res., 32(10), 3001- 3012. https://doi.org/10.1016/S0043-1354(98)00056-6
  15. Ireland, J.C., B. Dávila and H. Moreno, 1995, Heterogeneous photocatalytic decomposition of polyaromatic hydrocarbons over titanium dioxide, Chemosphere, 30(5), 965-984. https://doi.org/10.1016/0045-6535(94)00452-Z
  16. Sabaté, J., J.M. Bayona and A.M. Solnas, 2001, Photolysis of PAHs in aqueous phase by UV irradiation, Chemosphere, 44, 119-124. https://doi.org/10.1016/S0045-6535(00)00208-3
  17. Keith, L.H. and W.A. Telliard, 1979, Priority pollutants 1-year perspective view, Environ. Sci. Technol., 13, 416-423. https://doi.org/10.1021/es60152a601
  18. Kim, J.Y., C.G. Hu, M.G. Lee and S.K. Kam, 2003, Photodegradation of pyrene, chrysene and benzo[a]pyrene in water (I), J. of Environ. Sci., 12(3), 337-344.
  19. Beltran, F.J., G. Ovejero and J. Rivas, 1996, Oxidation of polyaromatic hydrocarbons in water, 3. Radiation combined hydrogen peroxide, Ind. Eng. Chem. Rec., 35, 883-890. https://doi.org/10.1021/ie950363l
  20. Ollis and Turche, 1989, Intermediates and mutual rate inhibition, J. Catalysis, 119, 483- 496. https://doi.org/10.1016/0021-9517(89)90176-0
  21. 정연균, 1996, 광촉매 $TiO_{2}$를 이용한 페놀의 산화처리에 관한 연구, 연세대학교 박사학위논문, 138pp.
  22. Das, S., M. Muneer and K.R. Gopidas, 1994, Photocatalytic degradation of waste water pollutnants. Titanium dioxide mediated oxidation of polynuclear aromatic hydrocarbons, J. Photochem. Photobiol., A: Chem., 77, 83-88. https://doi.org/10.1016/1010-6030(94)80011-1
  23. 강준원, 박훈수, 최광호, 1995, 이산화티타늄 광촉매에서의 광분해반응에 의한 유기물질 제거에 관한 연구, 대한환경공학회지, 17(3), 283- 294.
  24. 손희종, 유명호, 최갑규, 김성윤, 이성식, 2000, $UV/TiO_{2}/H_{2}O_{2}$와 초음파를 이용한 시스템에서 Aniline 및 TOC의 산화능 향상에 관한 연구, 공업화학회지, 11(7), 737-742.
  25. 전승렬, 1996, 자외선 조사와 $TiO_{2}$ 반도체 촉매을 이용한 난분해성 오염물질의 산화반응 처리에 관한 연구, 연세대학교 박사학위논문, 114pp.
  26. Tanaka, K., K. Abe, C.Y. Sheng and T. Hisanaga, 1992, Photocatalytic wastewater treatment combined with ozone pretreatment, Environ. Sci. Technol., 26, 2534-2536. https://doi.org/10.1021/es00036a030
  27. 류성필, 1999, $TiO_{2}$ 광촉매를 이용한 Diazinon의 광분해에 관한 연구, 제주대학교 석사학위 논문, 54pp.
  28. 김효정, 2001, $TiO_{2}$ 광촉매를 이용한 LAS의 제거에 관한 연구, 제주대학교 석사학위논문, 35pp.
  29. 손희종, 유명호, 최갑규, 김성윤, 이성식, 2000, $UV/TiO_{2}/H_{2}O_{2}$와 초음파를 이용한 시스템에서 Aniline 및 TOC의 산화능 향상에 관한 연구, 공업화학회지, 11(7), 737-742.
  30. Al-Ekabi, H. and N. Serpone, E. Pelizzeti, C. Minero, M.N. Fox and R.B. Draper, 1989, Kinetic studies in heterogeneous photocatalysis, Langmuir, 5, 250. https://doi.org/10.1021/la00085a048