Preparation and Characterization of PVAL/PVP/Hexylene Glycol/Chitosan Hydrogels by $\gamma$-Ray

$\gamma$-선을 이용한 PVAL/PVP/헥실렌 글리콜/키토산 수화젤의 제조 및 특성

  • 최은경 (충남대학교 공업화학과) ;
  • 김형일 (충남대학교 공업화학과) ;
  • 노영창 (한국원자력연구소 방사선이용연구부)
  • Published : 2003.07.01

Abstract

Hydrogels for wound dressing from a mixture of poly(vinyl alcohol) (PVAL), poly(N-vinyl pyrrolidone) (PVP), hexylene glycol (HG) and chitosan were made. The hydrogels were obtained by physical crosslinking of freezing and thawing, chemical crosslinking of irradiation, and irradiation after freezing and thawing of mixture solutions. The solid concentration of PVAL/PVP/HG/chitosan was 15 wt%. The concentration of chitosan was 0.3 wt%, and the ratio of PVAL/PVP was 6:4. The concentration of HG was in the range of 1∼5 wt%. The number of repeated freezing and thawing was in the range of 1∼3 times, and gamma irradiation doses were 25, 35 and 50 kGy. The physical properties such as gelation, water absorption and gel strength of hydrogels were examined. Gel content and gel strength decreased as HG concentration increased, whereas degree of swelling increased. Gel content and gel strength increased as irradiation dose and the number of freezing and thawing increased, whereas degree of swelling decreased. The hydrogels were evaluated for the healing effect for animals and for the antibacterial effect.

생체 적합성이 우수한 폴리(비닐 알코올)(PVAL)과 폴리(N-비닐 피롤리돈)(PVP), 항균성이 있는 헥실렌글리콜 (HG)과 치료효과가 우수한 수용성 키토산을 혼합하여 상처치료용 수화젤을 제조하였다. 제조 방법으로 수용액의 동결과 융해에 의한 물리적 가교, 방사선 조사에 의한 화학가교 및 동결과 융해의 물리적 가교 후 방사선 가교를 이용하였다. 수화젤 제조시 PVAL/PVP/HG/키토산의 농도는 15 wt%, 키토산은 0.3wt%, PVAL과 PVP의 비는 6:4로 고정하였다. 용액내 HG의 농도를 1∼5 wt%로 변화시켰으며, 동결과 융해횟수는 1∼3회로 변화시켰고, 방사선 조사량은 25∼50 kGy로 변화시켰다. 위의 방법으로 제조된 수화젤의 젤화율, 팽윤도, 젤강도를 측정하였다. HG의 조성비가 증가할수록 젤화율과 젤강도는 감소하였고 팽윤도는 증가하였다. 조사량과 동결과 융해 횟수가 증가할수록 젤화율과 젤강도는 증가하였고 팽윤도는 감소하였다. 동물 실험을 통해 제조된 수화젤의 상처 치료효과를 보았으며, 항균 실험을 통해 항균성을 관찰하였다.

Keywords

References

  1. Briomaterials Res. v.2 J.H.Lee;Y.S.Cho;H.H.Kim;J.S.Lee
  2. Biocompatibility Interactions of Biological and Implantable Materials F.H.Silver;Ch.Doillon
  3. J. Control. Release v.31 J.M.Rosiak https://doi.org/10.1016/0168-3659(94)90246-1
  4. Biomaterials v.15 K.Burczak;T.Fujisato;M.Hatada;Y.Ikada https://doi.org/10.1016/0142-9612(94)90072-8
  5. Angew. Makromol. Chem. v.240 T.Hirai;T.Okinaka;Y.Amemiya;K.Kobayashi;M.Hirai;S.Hayashi https://doi.org/10.1002/apmc.1996.052400120
  6. Macromolecules v.6 E.Pines;W.Rins https://doi.org/10.1021/ma60036a020
  7. J. Polym. Sci., Part B: Polym. Phys. v.33 M.Liu;R.Cheng;R.Quian https://doi.org/10.1002/polb.1995.090331204
  8. Polymer v.41 C.M.Hassan;J.H.Ward;N.A.Peppas https://doi.org/10.1016/S0032-3861(00)00031-8
  9. Radiat. Phys. and Chem. v.46 J.M.Rosiak;P.Ulanski;L.A.Pajensky;F.Yoshii;K.Makuuchi https://doi.org/10.1016/0969-806X(95)00007-K
  10. Contact Dermatitis v.20 T.Kinnunen;M.Hannuksela
  11. Acta Derm Venereol(stockh) v.71 T.Kinnunen;M.Koskela
  12. React. Funct. Polym. v.55 S.J.Kim;S.J.Park;S.I.Kim https://doi.org/10.1016/S1381-5148(02)00214-6
  13. Biomat. Art. Cells. Art. Org. v.18 T.Chandy;C.P.Sharma https://doi.org/10.3109/10731199009117286
  14. Chitin and Chitosan G.S.Braek;T.Anthonsen;P.Sandford
  15. Chitin, Chitosan and Related Enzymes J.P.Zikakis
  16. Polymer(Korea) v.25 T.H.Kim;Y.C.Nho
  17. Radiation Effects on Polymers R.L.Clough;S.W.Shalaby
  18. Radiat. Phys. and Chem. v.55 C. Tranquilan-Aranilla;F.Yoshii;A.M. Dela Rosa; K.Makuuchi https://doi.org/10.1016/S0969-806X(98)00317-X
  19. Radiat. Phys. and Chem. v.55 L.F.Miranda;A.B.Lugao;L.D.B.Machado;L.V.Ramanathan https://doi.org/10.1016/S0969-806X(99)00216-9
  20. Angew. Makromol. Chem. v.240 T.Hirai;T.Okinaka;Y.Amemiya;K.Kobayashi;M.Hirai;S.Hayashiq https://doi.org/10.1002/apmc.1996.052400120