The Effects of Blend Composition and Blending Time on the Ester Interchange Reaction and Tensile Properties of PLA/LPCL/HPCL Blends

  • Yoon, Cheol-Soo (Department of Textile Engineering, Dankook University) ;
  • Ji, Dong-Sun (Department of Textile Engineering, Dankook University)
  • Published : 2003.06.01

Abstract

PLA/LPCL/HPCL blends composed of poly(lactic acid) (PLA), low molecular weight poly($\varepsilon$-caprolactone) (LPCL), and high molecular weight poly($\varepsilon$-caprolactone) (HPCL) were prepared by melt blending for bioabsorbable fila-ment sutures. The effects of blend composition and blending time on the ester interchange reaction by alcoholysis in the PLA/LPCL/HPCL blends were studied. Their thermal properties and the miscibility due to the ester interchange reaction were investigated by $^1{H-NMR}$, DSC, X-ray, and UTM analyses. The hydroxyl group contents of LPCL in the blends decreafed by the ester interchange reaction due to alcoholysis. Thus, the copolymer was formed by the ester interchange reaction at $200^{\circ}C$ for 30-60 minutes. The thermal properties of PLA/LPCL/HPCL blends such as melting temperature and heat of fusion decreased with increasing ester interchange reaction levels. However, the miscibility among the three poly-mers was improved greatly by ester interchange reaction. Tensile strength and modulus of PLA/LPCL/HPCL blend fibers increased with increasing HPCL content, while the elongation at break of the blend fibers increased with increasing LPCL content.

Keywords

References

  1. J. S. Yoon, I. J. Chin, M. N. Kim, and C. Kim, Macromolecules, 29, 3303 (1996) https://doi.org/10.1021/ma950314k
  2. P. A. Holmes, Phy. Technol., 16, 32 (1985) https://doi.org/10.1088/0305-4624/16/1/305
  3. I. Horacek and V. Kalisek, J. Appl. Polym. Sci., 54, 1767 (1994) https://doi.org/10.1002/app.1994.070541119
  4. R. Gref, Y. Minamike, M. T. Percchia, V. Trubestskoy, V. Torchilin, and R. Langes, Science, 263, 1600 (1994) https://doi.org/10.1126/science.8128245
  5. H. R. Kricheldorf, M. Berl, and N. Scharnagl, Macromolecules, 21, 286 (1988) https://doi.org/10.1021/ma00180a002
  6. H. Tsuji and Y. Ikada, Polymer, 36, 2709 (1995) https://doi.org/10.1016/0032-3861(95)93647-5
  7. D. W. Grijpma, J. P. Penning, and A. J. Penning, Colloid Polym. Sci., 272, 1068 (1994) https://doi.org/10.1007/BF00652375
  8. C. W. Lee, J. Korean Fiber Soc., 34, 143 (1997)
  9. S. C. Tjong, Y. Xu, and Y. Z. Meng, Polymer, 40, 3703 (1999) https://doi.org/10.1016/S0032-3861(98)00623-5
  10. S. H. Kim and S. W. Kang, Fiber. Polym., 1, 83 (2000) https://doi.org/10.1007/BF02875190
  11. J. H. Youk and W. H. Jo, Fiber. Polym., 2, 81 (2001) https://doi.org/10.1007/BF02875263
  12. E. J. Choi, J. K. Park, and J. N. Chang, J. Polym. Sci., Part B, Polym. Phys., 32, 2481 (1994) https://doi.org/10.1002/polb.1994.090321505
  13. D. S. Ji and C. S. Yoon, J. Korean Fiber SoC., 36, 25 (1999)
  14. A. M. Kotliar, J. Polym. sci., Part D, Macromol. Rev., 16, 367 (1981) https://doi.org/10.1002/pol.1981.230160106
  15. P. J. Flory, J. Am. Chem. Soc., 62, 2255 (1940) https://doi.org/10.1021/ja01866a001
  16. W. J. Bae, W. H. Jo, and Y. H. Park, Macromolecular Res., 10, 145 (2002) https://doi.org/10.1007/BF03218264
  17. R. S. Porter and L. H. Wang, Polymer, 33, 2019 (1992) https://doi.org/10.1016/0032-3861(92)90866-U
  18. J. H. and W. S. Ha, J. Korean Fiber Soc., 35, 457 (1998)
  19. J. E. Mark, 'Polymer Data Handbook', pp.627-633, Oxford Univ. Press Inc., New York, 1999