DOI QR코드

DOI QR Code

Nanoscale Microstructure and Magnetic Transport in AIN/Co/AIN/Co… Discontinuous Multilayers

  • Yang, C.J. (Research Institute of Industrial Science and Technology(RIST)) ;
  • Zhang, M. (Research Institute of Industrial Science and Technology(RIST)) ;
  • Zhang, Z.D. (Institute of Metal Research, Academic Sinica) ;
  • Han, J.S. (Research Institute of Industrial Science and Technology(RIST))
  • Published : 2003.06.01

Abstract

Microstructure and magnetic transport phenomina in rf sputtered AIN/CO type ten- layered discontinuous films of nanoscaled [AIN(3 nm)/Co(t nm)]…$_10$ with t$_Co$=1.0∼2.0 nm have been investigated. The microstructure and tunneling magnetic resistance of the samples are strongly dependent on the thickness of Co layer, Negative tunneling magneto-resistance due to the spin-dependent transport has been observed along the current-in-plane configuration in the samples having the Co layers below 1.6 nm thick. When the thickness of Co layer was less than 1.2 nm, randomly oriented granular Co particles were completely isolated and embedded in amorphous AIN matrix, and the films showed the superparamagnetic behavior with a high MR value of ${\Delta}p/p_0$=1.8%. As t$_Co$ increases, a transition from the regime of co-existence of superparamagnetic and ferromagnetic behaviors to ferromagnetic behavior was observed. funneling barrier called “decay length far tunneling” fur the films haying the thickness of Co layer from 1.4 to 1.6 nm was measured to be ranged from 0.004 to 0.021 ${\AA}$$^{-1}$.

Keywords

References

  1. Phys. Lett. v.A54 N.Julliere https://doi.org/10.1016/0375-9601(75)90174-7
  2. Phys. Rev. v.B39 C.Slonczewske https://doi.org/10.1103/PhysRevB.39.6995
  3. Phys. Rev. Lett. v.31 P.Shen;B.Abeles;Y.Arie https://doi.org/10.1103/PhysRevLett.31.44
  4. Phys. Rev. Lett. v.37 J.S.Helman;B.Abeles
  5. Phys. Rev. Lett. v.76 A.Milner;A.Gerber;B.Groisman;M.Karpovsky;A.Gladkikh https://doi.org/10.1103/PhysRevLett.76.475
  6. Phys. Rev. v.B56 S.Honda;T.Okada;M.Nawate;M.Tojumoto https://doi.org/10.1103/PhysRevB.56.14566
  7. Mater. Sci. and Eng. v.B31 H.Fujimori;S.Mitani;S.Ohnuma https://doi.org/10.1016/0921-5107(94)08032-1
  8. Phys. Rev. v.B60 T.Zhu;Y.J.Wang https://doi.org/10.1103/PhysRevB.60.11918
  9. Phys. Rev. v.B62 S.Sankar;A.E.Berkowita;D.J.Smith https://doi.org/10.1103/PhysRevB.62.14273
  10. Thin Solid Films v.289 I.Shalish;S.M.Gasser;E.Kolawa;M.A.Nicolet;R.P.Ruiz https://doi.org/10.1016/S0040-6090(96)08919-5
  11. J. Appl. Phys. v.81 S.Snakar;B.Dieny;A.E.Berkowitz https://doi.org/10.1063/1.364904
  12. Appl. Phys. Lett. v.73 S.Snakar;A.E.Berkowitz;D.J.Smith https://doi.org/10.1063/1.121924
  13. J. Appl. Phys. v.90 G.N.Kakazei;Y.G.Pogorelov;A.M.L.Lopes;J.B.Sousa;S.Cardoso;P.P.Freitas;M.M.Pereira de Azevedo;E.Snoeck https://doi.org/10.1063/1.1399029
  14. J. Magn. Magn. Mater v.185 B.Dieny;S.Sankar;M.R.McCartney;D.J.Smith;P. Bayle-Guillemaud;A.E.Berkowitz https://doi.org/10.1016/S0304-8853(98)00028-6
  15. J. Appl. Phys. v.82 S.Honda;M.Nawate;M.Tanaka;T.Okada https://doi.org/10.1063/1.365770
  16. J. Appl. Phys. v.79 Y.Xu;B.Zhao;X.Yan https://doi.org/10.1063/1.362049
  17. Single Electron Tunneling D.V.Averin;Y.N.Narazov;H.Grabert(ed.);M.H.Devoret
  18. Phys. Rev. v.B56 L.F.Schelf;A.Fert;F.Fettar;P.Holody;S.F.Lee;J.L.Maurice;F.Petroff;A.Vaures
  19. Adv. Phys. v.24 B.Abeles;P.Sheng;M.D.Coutts;Y.Arie https://doi.org/10.1080/00018737500101431