Biophoton Emission of MDCK Kidney Cell with ROS(reactive oxygen species)

Biophoton에 의한 생체 세포수준에서의 항산화 작용에 대한 척도

  • Published : 2003.06.01

Abstract

This study was studies biophoton characteristics of Madin-Darby canine kidney cells under the influence of CsA and each cell type (mock, wt, R55A) by employing a Photomultipliertube. $\textrm{H}_2\textrm{O}_2$ was used for producing reactive oxygen species (ROS) in this measurement. ROS is also generated during oxidative metabolism in living organism. Images from a fluorescence show an increase of photon intensity emitted from the sample on the influence of CsA and each cell type (mock, wt, R55A). It is believed chemiluminescence (CL) occurred by ROS is responsible for the biophoton emission. hence PMT measurement might be considered as a useful tool for studying biochemical characteristics in relation to ROS.

3 가지 세포 타입 (mock, wt, R55A)에 CsA를 처리하여 세포에 영향을 주는 원인과의 관계를 PMT를 가지고 측정했다. ROS와 CsA를 사용하여 활성화 산소 (ROS)의 변화를 측정하였다. 3 가지 세포 타입 (mock, wt, R55A) 의 CsA 처리에 영향을 끼치는 광자를 측정했을 때 광자 양이 증가함을 알 수가 있었다. 이러한 광자 양으로부터 ROS를 발생하게 되는 사실을 발견했다. 따라서 PMT에 의한 측정은 ROS의 생화학적 상태 변화를 측정하는 새로운 분석의 하나이다.

Keywords

References

  1. Nature v.421 Sacrifice for the grater good? Editorials https://doi.org/10.1038/421875a
  2. Emboyos. development v.107 Mitotic domains reveal early commitment of cells in drosophila Foe, V. F.
  3. Urban and Schwarzenberg Electromagnetic bio-information Popp, F. A.
  4. In coherent excitations in biological systems Popp, F. A.;W. Nagel;H. Klima
  5. J. Neuroscience Method v.93 Two-dimensional photon counting imaging and spatiotemporal characterization of ultraweak photon emision from a rat's brain in vivo Kobayashi, M.;M. Takeda;K. Ito;H. Kato;H. Inaba https://doi.org/10.1016/S0165-0270(99)00140-5
  6. J. Neuroscience Research v.34 In vivo imaging of spontaneous ultraweak photon emission from a rat's brain correlated cerebral energy metabolism and oxidative stress Kobayashi, M.;M. Takeda;T. Sato;Y. Yamazaki;K. Kaneko;K. Ito;H. Kato;H. Inaba https://doi.org/10.1016/S0168-0102(99)00040-1
  7. Phys. Lett. A v.293 Delayed luminescence of biological system in tems of coherent states Popp, F. A.;B. Ruth;W. Bahr;J. Bohm;P. Grass;G. Grolig;M. Rattemeyer;H. G. Herzog;Z. Yan;Y. Yan https://doi.org/10.1016/S0375-9601(01)00832-5
  8. J. Appl. Phys. v.34 Growth control and biophoton radiation by plant hormones in red bean Kai, S.;T. Ohya;K. Moriya;T. Fujimoto https://doi.org/10.1143/JJAP.34.6530
  9. Urol. Res. v.23 Ultraweak biophoton emission imaging of transplanted bladder cancer Amano, T.;M. Kobayashi;B. Devaraj;M. Usa;H. Inaba https://doi.org/10.1007/BF00300020
  10. J. Appl.Physiol. v.84 Cellular adaptations of skeletal muscles to cyclosporine Biring, M.S.;M. Foumier;D.J. Ross;M.I. Lewis
  11. biochem. physiol. C. v.110 no.2 Chromiun-induced excretion of urinary lipid metabolites, DNA damage, nitric oxide production, and generation of reactive oxygen species in sprague-dawley rats Bagchi, D.;E. A. Hassoun;M. Bagchi;S. J. Stohs
  12. Oxidative stress Oxidative stress and formation of excited species Cadenas, E.
  13. physiol. Rev. v.59 Hydroperoxide metabolism in mammalian tissues Chacce, B.;H. Sies;A. Boveris https://doi.org/10.1152/physrev.1979.59.3.527
  14. Epidemiology v.8 Residential exposure to 60Hz magnetic field and adult cancers in Taiwan Li, C. Y.;F. Theriault;R. S. Lin https://doi.org/10.1097/00001648-199701000-00004