References
- Computer simulation of liquids Allen,M,A.;Tildesley,D.J.
- 대한금속학회회보 v.11 no.6 분자동력학의 개요와 재료공학에의 응용 (Ⅰ)(Ⅱ) 김영석
- J. Chem. Phys. v.31 Studies in molecular dynamics. I. General method Alder,B.J.;Wainwright,T.E. https://doi.org/10.1063/1.1730376
- Int. J. Fract. Mech. v.6 no.2 An atomistic study of fracture Chang,R. https://doi.org/10.1063/1.1730376
- Phys. Rev. Lett. v.44 no.14 Computer simulation of crack propagation Paskin,A.;Gohar,A.;Dienes,G.J. https://doi.org/10.1103/PhysRevLett.44.940
- Mater. Sci. Eng. v.2 A molecular-dynamic simulation of crack-tip extention : the brittle-to-ductile transition, Modeling Simul Cheug,K.S.;Yip,S. https://doi.org/10.1103/PhysRevLett.44.940
- 大阪大學 博士學位論文 金屬結晶 の破壞機構の分子動力學法による硏究 中谷
- Wear v.188 Friction and tool wear in nano-scale machining - a molecular dynamic approach Maekawa,K.;Itoh,A. https://doi.org/10.1016/0043-1648(95)06633-0
- J. of Trib. v.116 Molecular dynamic investigation of two-dimensional atomic-scale friction Kim,D.E.;Suh,N.P. https://doi.org/10.1016/0043-1648(95)06633-0
- Computer Phys. Communications v.147 On the parallelization of molecular dynamic codes Trabado,G.P.;Plata,O.;Zapata,E.L. https://doi.org/10.1115/1.2927200
- Theory of simple liquids(2nd Ed.) Hansen,J.P.;McDonald,I.R. https://doi.org/10.1016/S0010-4655(02)00381-8
- Proc. Ray. Soc. v.106A The determination of molecular fields. I. From the variation of the viscosity of a Gas with Temperature Lennard Jones,J.E.
- Surface Sci. v.144 Molecular dynamical calculation of crack propagation in segregated grain boundaries of iron Ishida,Y.;Mori,M.;Hashimoto,M.
- Phys. Rev. A v.5 no.134 Interstitials and vacancies in α-iron Johnson,R.A. https://doi.org/10.1016/0039-6028(84)90719-2
- Phys. Rev. B v.29 no.12 Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals Daw,M.;Baskes,M. https://doi.org/10.1103/PhysRevB.29.6443
- Phil. Mag. A v.50 A simple empirical N-body potential for transition metals Finnis,M.W.;Sinclair,J.E. https://doi.org/10.1103/PhysRevB.29.6443
- Phys. Rev. Lett. v.56 no.6 New empirical model for the structural properties of silicon Tersoff,J. https://doi.org/10.1080/01418618408244210
- Phys. Rev. B v.31 no.8 Computer simulation of local order in condensed phases of silicon Stillinger,F.H.;Weber,T.A. https://doi.org/10.1103/PhysRevLett.56.632
- Phys. Rev. v.159 Computer 'Experiments' on classical fluids. I. Thermidynamical properties of Lennard-Jones Molecules Verlet,L. https://doi.org/10.1103/PhysRevB.31.5262
- J. Chem. Phys. v.72 no.4 Molecular dynamics simulations at constant pressure and/or temperature Andersen,H.C. https://doi.org/10.1103/PhysRev.159.98
- Numerical initial value problems in ordinary differential equations Gear,C.W. https://doi.org/10.1063/1.439486
- Ph.D thesis, Osaka University The analysis on the deformation behavior of the crystal grain boundary using molecular dynamics Nakatani,A.
- Metals and Materials v.5 no.4 Molecular dynamics studies for the generation and the movement of dislocation Kim,Y.S.;Choi,D.Y.;Park,J.Y.
- Science v.289 Formation, stability, and breakup of nanojets Moseler,M.;Landman,U. https://doi.org/10.1126/science.289.5482.1165
- Nature v.418 Atomistic mechanisms governing elastic limit and incipient plasticity in crystals Li,J.;Van Vliet, K.J.;Zhu,T.;Yip,S.;Suresh.S. https://doi.org/10.1126/science.289.5482.1165
- IUTAM2003 Symposium on Mesoscopic Dynamics in Fracture Process and Strength of Materials Three dimensional molecular dynamics simulation of AFM-based lithography process for fabrication of nano components in MEMS applications Kim,Y.S. https://doi.org/10.1038/nature00865
- Phys. Stat. Sol. B. v.217 Concurrent coupling of length scales in solid state systems Rudd,R.E.;Broughton,J.Q. https://doi.org/10.1002/(SICI)1521-3951(200001)217:1<251::AID-PSSB251>3.0.CO;2-A
- Quasi-molecular modeling Greenspan,D. https://doi.org/10.1002/(SICI)1521-3951(200001)217:1<251::AID-PSSB251>3.0.CO;2-A
- KSME Int. J. v.12 no.3 Molecular dynamics simulation for microfracture behavior of material Kim.Y.S.;Park,J.Y.
- 대한금속학회회보 v.13 no.7 재료마당 김영석
Cited by
- A Study on Deformation Behavior of the Grain-Size Controlled Rheology Material by Using Nanoindenter and AFM vol.13, pp.4, 2004, https://doi.org/10.5228/KSPP.2004.13.4.374