Removal of Nitrate in Column Reactors Using Surfactant Modified Zeolite

SMZ를 이용한 컬럼반응조 내 질산성 질소의 제거

  • Published : 2003.06.01

Abstract

The objective of this study was to investigate the characteristics of nitrate removal by conducting the column test in order to see the performance of surfactant modified zeolite (SMZ) as a permeable reactive barrier material. The prediction of nitrate removal was tested using the one-dimensional advective-dispersive model fitted to the experimental breakthrough curve. A methodology for scaling up to in-situ permeable reactive barrier was also proposed. The breakthrough of nitrate in the column packed with SMZ was well predicted using linear equilibrium adsorption model. The breakthrough time and half-life obtained by breakthrough experiment with variation of flowrates were decreased with the increase of flowrates. When 10㎥/day of groundwater containing the 50 mg/l of nitrate is to be treated to satisfy the potable water quality criteria (10 mg/l) by SMZ reactive barrier, 300 tons of SMZ and about 6 years of breakthrough time will be required, suggesting that 165 million wons are needed as barrier material expenses in each 6 years besides the initial design and construction expenses and the minimal monitoring and maintenance expenses.

본 연구의 목적은 반응벽체 매질로서 제올라이트의 표면특성을 계면활성제로 변화시켜 제조한 SMZ로 충진된 컬럼 시험을 수행함으로써 질산성 질소의 제거특성을 조사하는 것이다. SMZ컬럼 실험에서 얻어진 파과곡선의 해석결과를 이용하여 일차원 이류확산모델을 통해 예측되는 반응벽체의 질산성 질소(N $O_3$$^{-}$-N)제거효과와 실제 소규모 반응벽체 설계의 기본 인자 도출을 통한 설계방법론을 제시하였다 SMZ충진 컬럼 내 질산성 질소의 파과에 대한 예측이 선형 평형 흡착 이동모델을 이용하여 수행될 수 있음을 알 수 있었다. 유량을 변화시키면서 수행한 파과실험을 통해 얻은 파과시간과 반감기( $t_{\frac{1}{2}}$)는 유량의 크기에 반비례함을 알 수 있었다. 질산성 질소농도가 50mg/L인 지하수를 10 $m^3$/day의 처리용량으로 음용수 수질기준인 10mg/L로 감소시키고자 할 경우, 300 ton의 SMZ를 사용하여 약 6년 간 (5.8년)매질의 교체 없이 SMZ 반응벽체를 사용할 수 있을 것으로 예측되었으며, 초기 건설비용과 조사비용 등을 제외하고는 6년에 한 번씩 교체를 위한 매질비용으로 약 1억 6천 5백만 원과 주기적으로 간단한 유지관리와 모니터링 비용이 소요될 것으로 예측되었다.

Keywords

References

  1. USEPA (1998), Permeable Reactive Barrier Technologies for Contaminant Remediation, EPA/600/R-98/125
  2. USEPA (1998), Metal-Enhanced Dechlorination of Volatile Organic Compounds Using an In-Situ Reactive Iron Wall, EPA/540/R-98/501
  3. Powell, R. M., Puls, R. W., Blowes, D. W., Vogan, J. L., Gillham, R.W., Powell, P.D, Schultz, D, Landis, R., and Sivavec, T, (1998) Permeable Reactive Barrier Technologies for Contaminant Remediation, EPA/600/R-98/125; U. S. Environmental Protection Agency
  4. Lackovic, J. A., Nikolaidis, N. P., and Dobbs, G. M. (2000), 'Inorganic Arsenic Removal by Zero-Valent Iron', Environ. Sci. Technol., 17, pp. 29-39
  5. Farrel, J, Bostick, W. D., Jarabek, R. J, Fiedor, J. N. (1999), 'Electrosorption and Reduction of Pertechnetate by Anodically Polarized Magnetite', Environ. Sci. Technol., 33, pp. 1244-1249 https://doi.org/10.1021/es980086k
  6. Eykholt, G. R. and Davenport, D. T. (1998), 'Dechlorination of the Chloroacetanilide Herbicides Alachlor and Metolachlor by Iron Metal', Environ. Sci. Technol., 32, pp.1482-1487 https://doi.org/10.1021/es970678n
  7. Nam, S and Tratnyek, P. G. (2000), 'Reduction of Azo Dyes with Zero-valent Iron' Water Research, 34, 1837-1845 https://doi.org/10.1016/S0043-1354(99)00331-0
  8. Devlin, J. F., Klausen, J. and Schwarzenbach, R. P. (1998), 'Kinetics of Nitroaromatic Reduction on Granular Iron in Recirculating Batch Experiments', Environ. Sci. Technol., 32, pp. 1941-1947 https://doi.org/10.1021/es970896g
  9. Agrawal, A. and Tratnyek, P. G. (1996), 'Reduction of Nitro Aromatic Compounds by Zero-Valent Iron Metal', Environ. Sci. Technol., 30, pp. 153-160 https://doi.org/10.1021/es950211h
  10. Huang, C. P., Wang, H. W. and Chiu, P. C. (1998), 'Nitrate Reduction by Metallic Iron', Wat. Res., 32, pp. 2257-2264 https://doi.org/10.1016/S0043-1354(97)00464-8
  11. Choe, S., Chang, Y. Y, Hwang, K. Y. and Khim, J. (2000),'Kinetics of Reductive Denithfication by Nanoscale Zero valent Iron', Chemosphere., 41, pp. 1307-1311 https://doi.org/10.1016/S0045-6535(99)00506-8
  12. Alowitz, M. J. and Scherer, M. M. (2002), 'Kinetics of Nitrate, Nithte, and Cr(VI) Reduction by Iron Metal', Environ. Sci. Technol., 36, pp. 299-306 https://doi.org/10.1021/es011000h
  13. Li, Z. and Bowman, R. S. (1997), 'Counterion Effects on the Sorption of Cationic Surfactant and Chromate on Natural Clinoptilolite', Environ. Sci. Technol., 32, pp. 1948-1955 https://doi.org/10.1021/es9708981
  14. Li, Z,, Stephen, J. R., Zou, Y., and Bowman, R. S. (1998), 'Long-Term Chemical and Biological Stability of Surfactant-Modified Zeolite', Environ. Sci. Technol., 32, pp. 2628-2632 https://doi.org/10.1021/es970841e
  15. Li, Z. and Jones, H. K., Bowman, R. S., and Richard, H. (1999), 'Enhanced Reduction of Chromate and PCE by Pelletized Surfactant-Modified Zeolite/Zerovalent Iron', Environ. Sci. Technol., 33, pp.4326-4330 https://doi.org/10.1021/es990334s
  16. Li, Z., Burt, T., and Bowman, R. S. (2000), 'Sorption of lonized Organic Solutes by Surfactant-Modified Zeolite', Environ. Sci. Technol., 34, pp. 3756-3760 https://doi.org/10.1021/es990743o
  17. Johnson, R. (2001) 'Summary of Pilot-scale Modeling of A Permeable Reactive Barrier Filled with Fe/SMZ Cubes', http://cgr.ese.ogi.edu/Ieap/#pubs
  18. 최승희, 김지형, 장윤영, 황경엽. (1999), '나노크기 FeO분말을 이용한 질산성 질소의 환원 탈질 반응의 반응속도론, 한국물환경학회지 , 15(2), pp. 257-264
  19. 배범한 (1999), '금속철을 이용한 TNT환원시의 동역학산정', 한국토양환경학회지 . 4(1), pp. 97-107
  20. 장윤영,장윤석,배범한,강정우,지원현.(2001),'제강분진의 산화촉매반응을 이용한 염색폐수처리', 한국물환경학회지, 17(5), pp. 565-571
  21. 박재우, 이정주(2001),'유기오염물질과 중금속의 동시 제거를 위한 흡착제로서의 Organobentonite에 관한 연구', 대한환경공학회 춘계학술발표회 논문집(II), pp. 111-112
  22. 이정주,박재우,김일규(2001), '클로로벤젠과 납의 동시 제거를 위한 흡착제로서의 유기 벤토나이트에 관한 연구', 한국지하수토앙환경학회지, 6(4), pp. 41-50
  23. 이동호,이웅,박규홍,이승학,박준범(2002),'질소제거를 위한 반응벽체 매질로서의 천연 Zeolite와 SMZ(Surfactant Modified Zeolite)의 적용성 평가', 한국물환경학회지 18(5), pp. 483-492
  24. Lee, D., Lee, W., Lee, J. H., and Park, K. (2002), 'Enhanced Sorption of Nitrogen Compounds Using Natural and Surfactant-modified Zeolite as A Permeable Reactive Material', The 6th International Symposium on Environmental Geo-technology and Global Sustainable Development., July 2-5, Chung-Ang University, Korea
  25. Haggerty, G. M., Bowman, R. S. (1994), 'Sorption of Chromate and Other Inorganic Anions by Organo-Zeolite', Environ. Sci. Technol., 28, pp. 452-458 https://doi.org/10.1021/es00052a017
  26. Brusseau, M. L. (1992), 'Non-equilibrium Transport of Organic Chemicals: the Impact of Porc-water Velocity', J. Contam. Hydrol., 9, pp.354-368
  27. Kookana, R. S., Schuller, R. D. and Aylmore, L. A. G. (1993), 'Simulation of Simazine Transport through Soil Columns Using Time-dependent Sorption Data Measured under Flow Conditions', J. Contam. Hydrol., 14, pp.93-115 https://doi.org/10.1016/0169-7722(93)90033-O
  28. Selim, H. M., Davidson, J. M., and Mansell, R. S. (1976) 'Evaluation of A Two-site Adsorption-desoiption Model for Describing Solute Transport in Soils', In Proc. Summer Computer Simulation Conf., Washington, D. D
  29. Carneron, D. A. and Klute, A. (1977), 'Convective-dispersive Solute Transport with A Combined Equilibrium and Kinetic Adsorption Model', Water Resour. Res., 19, pp. 718-724 https://doi.org/10.1029/WR019i003p00718
  30. van Genuchten, M. Th. and Wagenet, R. J., (1989), 'Two-sitc/two-region Models for Pesticide Transport and Degradation: Theoretical Development and Analytical Solutions', Soil Sci. Soc. Am. J., 53, pp. 1303-1310 https://doi.org/10.2136/sssaj1989.03615995005300050001x
  31. Toride, N., Leji, F. J. and van Genuchten, M. T. (1999), The CXTFIT Code for Estimating Transport Parameters from Laboratory or Ficld Tracer Experiments, Research Report No. 137, U. S. Salinity Lab., U. S. Dcpartment of Agriculture
  32. Fomwalt, J. J. and Hutchins, R. A. (1966), 'Purifying Liquids with Activated Carbon', Chem. Eng. (11 April): 1979; (9 May): 155