Expression Pattern of Acetyl Xylan Esterase of Streptomyces coelicolor A3(2) in Escherichia coli

Escherichia coli에서의 Streptomyces coelicolor A3(2)의 acetyl xylan esterase 발현 양상

  • 이인숙 (단국대학교 미생물학전공) ;
  • 윤석원 (단국대학교 미생물학전공) ;
  • 정상운 (단국대학교 의학레이저연구센터) ;
  • 오충훈 (단국대학교 의학레이저연구센터) ;
  • 김재헌 (단국대학교 의학레이저연구센터)
  • Published : 2003.06.01

Abstract

We cloned a gene encoding acetyl xylan esterase(axeA) of Streptomyces coelicolor A3(2) and studied its expression pattern in Escherichia coli. The full sequence of axeA was amplified by PCR. Sequence analysis of the PCR product revealed an open reading frame of 1,008 nucleotides encoding a protein consisted of 335 amino acid residues, with a calculated molecular mass of about 38 kDa. The base sequence showed 98% homology to the same gene of Streptomyces lividans. Two different kinds of acetyl xylan esterases were produced in Escherichia coli(pLacI) by IPTG induction; their molecular weights were 38 kDa and 34 kDa, respectively. Of these, 38 kDa protein seemed to be a total protein holding N-terminal signal peptide region, whereas 34 kDa protein seemed to be a matured protein without signal peptide which was produced by peptide bond cleavage between two amino acid residues of alanine 41 and alanine 42.

streptomyces coelicolor A3(2)의 acetyl xylan esterase 유전자를 Escherichia coli께 클로닝하여 그 발현양상을 조사하였다. 이를 위하여 유전자 전체 DNA를 PCR증폭을 통하여 제조하였다. PCR산물의 염기서열을 분석한 결과 1,008개의 nucleotide로 구성된 하나의 open reading frame이 존재함을 확인하였고, 이것은 335개의 아미노산으로 이루어진 약 38 kDa의 단백질을 생성할 것으로 예측할 수 있었다. 이 유전자의 염기 서열은 streptomyces lividans의 acetyl xylan esterase와 98%의 상동성을 가졌다. 그런데 Escherichia coli (pLacl)에서 IPTG유도에 의해 두가지의 acetyl xylan esterase가 발현되었으며 각각의 분자량은 38 kDa과 34 kDa이었다. 이중에서 38 kDa의 단백질은 N-말단의 signal peptide를 포함한 전체 단백질이고,34 kDa의 단백질은 41번과 42번의 두 알라닌 잔기사이의 펩티드 결합이 끊어져 생산된 것으로 추정되었다.

Keywords

References

  1. 석사학위논문, 단국대학교 Streptomyces coelicolor A3(2)의 acetyl xylan esterase를 발현하는 Escherichia coli의 H₂O₂저항성 최원일
  2. Biochem. J. v.321 Roles of the signal peptide and mature domains in the secretion and maturation of the neutral metalloprotease from Stretomyces cacaoi Chang,S.C.;M.H.Su;Y.H.Lee https://doi.org/10.1042/bj3210029
  3. Trends Biochem. Sci. v.17 Signal peptidases in prokaryotes and eukaryotes: a new protease family Dalbey,R.;von Heijne https://doi.org/10.1016/0968-0004(92)90492-R
  4. J. Biol. Chem. v.230 Leader peptidase catalyses the release of exported proteins from the outer surface of the E. coli outer membrane Dalbey,R.;W.Wickner
  5. Protein Sci. v.6 The chemistry and enzymology of the type I signal peptidases Dalbey,R.;M.O.Lively;S.Bron.;J.M.van Dijl https://doi.org/10.1002/pro.5560060601
  6. Microbiol. v.146 The acetyl xylan esterase of Bacillus pumilus belongs to a family of esterases with broad substrate specificity Degrassi,G.;M.Kojic;G.Ljubijankic;V.Venturi https://doi.org/10.1099/00221287-146-7-1585
  7. J. Membr. Biol. v.142 How proteins cross the bacterial cytoplasmic membrane Driessen,A.J.M.
  8. Biochem. J. v.319 Purification and characterization of an acetyl xylan esterase produced by Streptomyces lividans Dupont,C.;N.Daigneault;F.Shareck;R.Morsoli;D.Kluepfel
  9. FEBS Lett. v.244 Species-specific variation in signal peptide design, Implications for protein secretion in foreign host Heijne,G.;L.Abrahamsen https://doi.org/10.1016/0014-5793(89)80579-4
  10. Genetic manipulation of Streptomyces: A laboratory manual Hopwood,D.A.;M.J.Bibb;K.F.Chater;T.Kieser;C.J.Bruton;H.M.Kieser;D.J.Lydiate;C.P.Smith;J.M.Ward;H.Schrempf
  11. A new microbial world Horikoshi,K.;T.Aliba
  12. Biochim. Biophys. Acta. v.1491 Increased xylanase production in Streptomyces lividans after replacement of the signal peptide: dependence on box and inverted repeat sequence Kebir,H.;C.Dupont;R.Morosoli https://doi.org/10.1016/S0167-4781(00)00059-2
  13. J. Microbiol. v.33 Genetic variation of BIV isolates charcterized by PCR using degenerate primers Kwon,O.S.;J.J.Sninsky
  14. Nature v.227 Cleavage of structural proteins during the assembly of the head of bacteriophage T4 Laemmli,U.K. https://doi.org/10.1038/227680a0
  15. FEMS Microbiol. Lett. v.160 Modifications of Streptomyces signal peptides and their effects on protein production and secretion Lammertyn,E.;J.Anne https://doi.org/10.1111/j.1574-6968.1998.tb12882.x
  16. Pharmacol. Ther. v.87 The structure and mechanism of bacterial type I signal peptidases. A novel antibiotic target Paetzel,M.;R.E.Dalbey;N.C.Strynadlka https://doi.org/10.1016/S0163-7258(00)00064-4
  17. Appl. Environ. Microbiol. v.62 Effect of signal peptide alterations and replacement on export of xylanase A in Streptomyces lividans Page,N.;D.Kluepfel;F.Shareck;R.Morosoli
  18. Appl. Microbiol. Biotechnol. v.28 An acetyl esterase of Trichorderma reesei and its role in the hydrolysis of acetly xylans Poutanen,K.;M.Sundberg https://doi.org/10.1007/BF00268207
  19. Microbiol. Rev. v.37 The complete general secretory pathway in Gram-negative bacteria Pugsley,A.
  20. Molecular cloning: A laboratory manual(2nd ed.), Book 1 Sambrook,J.;E.F.Fritsch;T.Maniatis
  21. J. Bacteriol. v.183 Twin-arginine translocation pathway in Streptomyces lividans Schaerlaekens,K.;M.Schierova;E.Lammertyn;N.Geukens;J.Anne;L.Van.Mellaert https://doi.org/10.1128/JB.183.23.6727-6732.2001
  22. Appl. Environ. Microbiol. v.61 Purification and characterization of two thermostable acetyl xylan esterase form Thermoaerobacterium sp. Strain JW/SL-YS485 Shao,W.;J.Wiegel
  23. Gene v.107 Sequences of three genes specifying xylanases in Streptomyces lividans Shareck,F.;C.Roy;M.Yaguchi;R.Morosoli;D.Kluepfel https://doi.org/10.1016/0378-1119(91)90299-Q
  24. Gene v.153 Analysis of DNA flanking the xlnB locus of Streptomyces lividans reveals genes encoding acetyl xylan esterase and the RNA component of ribonuclease P Shareck,F.;P.Biely;R.Morosoli;D.Kluepfel https://doi.org/10.1016/0378-1119(94)00763-I
  25. Genes Dev. v.12 Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: indentification of a eubacterial homologus of archaeal and eukaryotic signal peptidases Tjalsma,H.;A.Bolhuis;M.L.van Roosmalen;T.Wiegert;W.Schumann;C.P.Broekhuizen;W.J.Quax;G.Venema;S.Bron;J.M.van Diji https://doi.org/10.1101/gad.12.15.2318
  26. J. Biol. Chem. v.268 A serine and a lysine residue implicated in the catalytic mechanism of the E. Coli leader peptidase Tschantz,W.R.;M.Sung;V.M.Delgado Partom;R.Dalbey
  27. Appl. Environ. Microbiol. v.63 Cloning and sequence analysis of genes encoding xylanase and acetyl xylan esterase from Streptomyces themoviolaceus OPC-520 Tsujibo,H.;R.Ohtsuki;T.Iio;I.Yamazaki;K.Miyamoto;M.Sugiyama;Y.Inamori
  28. J. Microbiol. v.33 Pleiotrophic effect of a gene fragment conferring H₂O₂-resistance in Streptomyces coelicolor Um,T.H.;C.H.Oh;J.S.Lee;Y.D.Park;J.H.Roe;J.H.Kim
  29. J. Biol. Chem. v.270 Identification of the potential active site of the signal peptidase SipS of Bacillus subtilis van Dijl,J.M.;A.de Jong;G.Venema;S.Bron https://doi.org/10.1074/jbc.270.8.3611
  30. Microbiol. Rev. v.52 Multiplicity of ß-1,4-xylanse in microorganisms: functions and applications Wong,K.K.Y.;L.U.L.Tan;J.N.Saddler