DOI QR코드

DOI QR Code

Taste Transduction

맛의 신호전달

  • Published : 2003.06.01

Abstract

Taste receptor cells respond to gustatory stimuli using a complex arrangement of receptor molecules, signaling cascades and ion channels. When stimulated, these cells produce action potentials that result in the release of neurotransmitter onto an afferent nerve fiber that in turn relays the identity and intensity of the gustatory stimuli to tie brain. A variety of mechanisms are used in transducing the four primary tastes. Direct interaction of the stimuli with ion channels appears to be of particular importance in transducing stimuli reported as salty or sour, whereas tile second messenger systems cyclic AMP and inositol trisphosphate are important in transducing bitter and sweet stimuli. In addition to the four basic tastes, specific mechanisms exist for the amino acid glutamate, which is sometimes termed the fifth primary taste. The emerging picture is that not only do individual taste qualities use more than one mechanism, but multiple pathways are available for individual tastants as well.

Keywords

References

  1. Ganchrow JR, Steiner JE, Daher M. 1983. Neonatal facial expressions in response to different qualities and intensities of gustatory stimuli. Infant Behave Dev 6: 189-200 https://doi.org/10.1016/S0163-6383(83)80026-5
  2. Kinnamon S. 2000. A plethora of taste receptor. Neuron 25: 507-510. https://doi.org/10.1016/S0896-6273(00)81054-5
  3. Roper SD. 1983. Regenerative impulses in taste cells. Science 220: 1311-1312. https://doi.org/10.1126/science.6857254
  4. Avenet P, Lindemann B. 1987. Patch-clamp study of isolated taste receptor cells of the frog. J Membr Biol 97: 223-240. https://doi.org/10.1007/BF01869225
  5. Lindemann B. 1996. Taste reception. Physiol Rev 76: 719-766.
  6. Gilbertson TA, Kinnamon SC. 1996. Making sense of chemicals. Chem Biol 3: 233-237. https://doi.org/10.1016/S1074-5521(96)90102-7
  7. Yamaguchi S. 1991. Basic properties of umami and effects on humans. Physiol Behav 49: 833-841. https://doi.org/10.1016/0031-9384(91)90192-Q
  8. Mela DJ, Marchall RJ. 1991. Sensory properties and perceptions of fats. In Dietary Fats: Determinants of Preference, Selection and Consumption. 1st ed. Mela DJ, ed. Elsevier Science Ltd, New York. p 43-57.
  9. Gilbertson TA. 1998. Gustatory mechanisms for the detection of fat. Curr Opin Neurobiol 8: 447-452. https://doi.org/10.1016/S0959-4388(98)80030-5
  10. Herness MS, Gilbertson TA. 1999. Cellular mechanisms of taste transduction. Annu Rev Physiol 61: 873-900. https://doi.org/10.1146/annurev.physiol.61.1.873
  11. Witt M, Reutter K, Miller IJ. 2002. Anatomy of the peripheral taste system. In Handbook of olfaction and taste. 1st ed. Doty RL, ed. Marcel Dekker, New York. p 521-557.
  12. Squire LR, Bloom FE, McConell SK, Roberts JL, Spitzer NC, Zigmond MJ. 2002. Fundamental Neuroscience. 2nd ed. Academic Press Inc, New York. p 200-210.
  13. Lindmann B. 1997. Sodium taste. Curr Opin Nephrol Hypertension 6: 425-429. https://doi.org/10.1097/00041552-199709000-00003
  14. Heck GL, Mierson S, DeSimone JA. 1984. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science 223: 403-429. https://doi.org/10.1126/science.6691151
  15. Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC. 1994. Amiloride-sensitive epithelial $Na^+$channel is made of three homologous subunits. Nature 367: 463-467. https://doi.org/10.1038/367463a0
  16. Kretz O, Barbry P, Bock R, Lindemann B. 1999. Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat. J Histochem Cytochem 47: 51-64. https://doi.org/10.1177/002215549904700106
  17. Gilvertson TA, Roper SD, Kinnamon SD. 1993. Proton currents through amiloride-sensitive $Na^+$ channels in isolated hamster taste cells: enhancement by vasopressin and cAMP. Neuron 10: 931-942. https://doi.org/10.1016/0896-6273(93)90208-9
  18. Lin W, Finger TE, Rossier BC, Kinnamon SC. 1999. Epithelial $Na^+$ channel subunits in rat taste cells: localization and regulation by aldosterone. J Comp Neurol 405: 406-420. https://doi.org/10.1002/(SICI)1096-9861(19990315)405:3<406::AID-CNE10>3.0.CO;2-F
  19. Nagi T, Nii D, Takeuchi H. 2001. Amiloride blocks salt taste transduction of the glossopharyngeal nerve in metamorphosed salamanders. Chem Senses 26: 965-969. https://doi.org/10.1093/chemse/26.8.965
  20. Eylam S, Spector AC. 2002. The effect of amiloride on operantly conditioned performance in an NaCl taste detection task and NaCl preference in C57BL/6J mice. Behav Neurosci 116: 149-59. https://doi.org/10.1037/0735-7044.116.1.149
  21. Erickson RP. 2000. The evolution of neural coding ideas in the chemical senses. Physiol Behav 69: 3-13. https://doi.org/10.1016/S0031-9384(00)00193-1
  22. Settle R, Meehan K, Williams GR, Doty RL, Sisley AC. 1986. Chemosensory properties of sour tastants. Physiol Behav 36: 619-623. https://doi.org/10.1016/0031-9384(86)90343-4
  23. Kinnamon SC, Dionne VE, Beam KG. 1988. Apical localization of $K^+$ channels in taste cells provides the basis for sour taste transduction. Proc Natl Acad Sci 85: 7023-7027. https://doi.org/10.1073/pnas.85.18.7023
  24. Miyamoto T, Fujiyama R, Okada Y, Sato T. 2000. Acid and salt responses in mouse taste cells. Prog Neurobiol 62: 135-157. https://doi.org/10.1016/S0301-0082(99)00072-6
  25. Ugawa S, Minami Y, Guo W, Saishin Y, Takatsuji K, Yamamoto T, Tohyama M, Shimada S. 1998. Receptor that leaves a sour taste in the mouth. Nature 395: 555-556. https://doi.org/10.1038/26882
  26. Stevens DR, Seifert R, Bufe B, Muller F, Kremmer E, Gauss R, Meyerhof W, Kaupp UB, Lindemann B. 2001. Hyperpolarization-activated channels HCN1 and 4 mediate response to sour stimuli. Nature 413: 631-635. https://doi.org/10.1038/35098087
  27. Lyall V, Biber TU. 1994. Potential-induced changes in intracellular pH. Am J Physiol 354: 3-22.
  28. Stewart RE, Lyall V, Feldman GM, Heck GL, DeSimone JA. 1998. Acid-induced responses in hamster chorda tympani and intracellular pH tracking by taste receptor cells. Am J Physiol 275: 227-238.
  29. Lin W, Ogura T, Kinnamon SC. 2002. Acid-activated cation currents in rat vallate taste receptor cells. J Neurophysiol 88: 133-141.
  30. Ishimoto H, Matsumoto A, Tanimura T. 2000. Molecular identification of a taste receptor gene for trehalose in Drosophila. Science 289: 116-119. https://doi.org/10.1126/science.289.5476.116
  31. Lush IE. 1989. The genetics of tasting in mice. VI. Saccharin, acesulfame, dulcin and sucrose. Genet Res 53: 95-99. https://doi.org/10.1017/S0016672300027968
  32. Max M, Shanker YG, Huang L, Rong M, Liu Z, Campagne F, Weinstein H, Damak S, Margolskee RF. 2001. Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nature Genet 28: 58-63. https://doi.org/10.1038/88270
  33. Dahl M, Erickson RP, Simon SA. 1997. Neural responses to bitter compounds in rats. Brain Res 756: 22-34. https://doi.org/10.1016/S0006-8993(97)00131-5
  34. Striem B, Pace U, Zehavi U, Naim M, Lancet D. 1989. Sweet tastants stimulate adenylate cyclase coupled to GTP-binding protein in rat tongue membranes. Biochem J 260: 121-126.
  35. Cummings TA, Powell J, Kinnamon SC. 1993. Sweet taste transduction in hamster taste cells: evidence for the role of cyclic nucleotides. J Neurophysiol 70: 2326-2336.
  36. Avert P, Hofmann F, Lindemann B. 1988. Transduction in taste receptor cells requires cAMP-dependent protein kinase. Nature 331: 351-354. https://doi.org/10.1038/331351a0
  37. Behe P, DeSimone JA, Avert P, Lindemann B. 1990. Membrane currents in taste cells of the rat fungiform papilla: evidence for two types of $Ca^{2+}$ currents and inhibition of $K^+$ currents by saccharin. J Gen Physiol 96: 1061-1084. https://doi.org/10.1085/jgp.96.5.1061
  38. Cummings TA, Daniels C, Kinnamon SC. 1996. Sweet taste transduction in hamster: sweeteners and cyclic nucleotides depolarize taste cells by reducing a $K^+$ current. J Neurophysiol 75: 1256-1263.
  39. Varkevisser B, Kinnamon SC. 2000. Sweet taste transduction in hamster: role of protein kinases. J Neurophysiol 83: 2526-2532.
  40. Bernhardt SJ, Naim M, Zehavi U, Lindemann B. 1996. Changes in $IP_3$ and cytosolic $Ca^{2+}$ in response to sugars and non-sugar sweeteners in transduction of sweet taste in the rat. J Physiol 490: 325-336. https://doi.org/10.1113/jphysiol.1996.sp021147
  41. Montmayeur JP, Matsunami H. 2002. Receptors for bitter and sweet taste. Curr Opin Neurobiol 12: 366-371. https://doi.org/10.1016/S0959-4388(02)00345-8
  42. Ninomiya Y, Shigemura N, Yasumatsu K, Ohta R, Sugimoto K, Nakashima K, Lindemann B. 2002. Leptin and sweet taste. Vitam Horm 64: 221-248. https://doi.org/10.1016/S0083-6729(02)64007-5
  43. Kawai K, Sugimoto K, Nakashima K, Miura H, Ninomiya Y. 2000. Leptin as modulator of sweet taste sensitivities in mice. Proc Natl Acad Sci 97: 11044-11049. https://doi.org/10.1073/pnas.190066697
  44. Spielman AI, Huque T, Whitney G, Brand JG. 1992. Transduction in taste. 1st ed. Corey DP, Roper SD, eds. The Rockefeller University Press, New York. p 307-324.
  45. Adler E. 2000. A novel family of mammalian taste receptors. Cell 100: 693-702. https://doi.org/10.1016/S0092-8674(00)80705-9
  46. Caicedo A, Roper SD. 2001. Taste receptor cells that discriminate between bitter stimuli. Science 291: 1557-1560. https://doi.org/10.1126/science.1056670
  47. Naim M, Seifert R, Nurnberg B, Grunbaum L, Schultz G. 1994. Some substances are direct activators of G-proteins. Biochem J 297: 451-454.
  48. Rosenzweig S, Yan W, Dasso M, Spielman AI. 1999. Possible novel mechanism for bitter taste mediated through cGMP. J Neurophysiol 81: 1661-1665.
  49. Kretz O, Bock R, Lindemann B. 1998. Occurrence of nitric oxide synthase in taste buds of the rat vallate papilla. Histochem J 30: 293-299. https://doi.org/10.1023/A:1003220125067
  50. Spickofsky N, Robichon A, Danho W, Fry D, Greeley D, Graves B, Madison V, Margolskee RF. 1994. Biochemical analysis of the transducin-phosphodiesterase interaction. Nature Struct Biol 1: 771-781. https://doi.org/10.1038/nsb1194-771
  51. Yan W, Sunavala G, Rosenzweig S, Dasso M, Brand JG, Spielman AI. 2001. Bitter taste transduced by $PLC-{\beta}2-dependent$ rise in $IP_3$ and ${\alpha}-gustducin-dependent$ fall in cyclic nucleotides. Am J Physiol Cell Physiol 280: 742-751.
  52. Rossler P, Boekhoff I, Tareilus E, Beck S, Breer H, Freitag J. 2000. G protein betagamma complexes in circumvallate taste cells involved in bitter transduction. Chem Senses 25: 413-421. https://doi.org/10.1093/chemse/25.4.413
  53. Spielman AI, Nagai H, Sunavala G, Dasso M, Breer H, Boekhoff I, Huque T, Whitney G, Brand JG. 1996. Rapid kinetics of second messenger formation in bitter taste. Am J Physiol Cell Physiol 270: 926-931.
  54. Clapp TR, Stone LM, Margolskee RF, Kinnamon SC. 2001. Immunocytochemical evidence for co-expressed of Type III $IP_3$ receptor with signaling components of bitter taste transduction. BMC Neurosci 2: 6-15. https://doi.org/10.1186/1471-2202-2-6
  55. Ogura T, Kinnamon SC. 1999. $IP_3-Independent$ release of $Ca^{2+}$ from intracellular stores: a novel mechanism for transduction of bitter stimuli. J Neurophysiol 82: 2657-2666.
  56. Brand JG, Teeter JH, Kumazawa T, Huque T, Bayley DL. 1991. Transduction mechanisms for the taste of amino acids. Physiol Behav 49: 899-904. https://doi.org/10.1016/0031-9384(91)90201-X
  57. Ikeda K. 1909. On a new seasoning. J Tokyo Chem Soc 30: 820-836.
  58. Chaudhari N, Landin AM, Roper SD. 2000. A novel metabotroopic glutamate receptor functions as a taste receptor. Nature Neurosci 3: 113-119. https://doi.org/10.1038/72053
  59. Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS. 2002. An amino-acid taste receptor. Nature 416: 199-202. https://doi.org/10.1038/nature726
  60. Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E. 2002. Human receptors for sweet and umami taste. Proc Natl Acad Sci 99: 4692-4696. https://doi.org/10.1073/pnas.072090199
  61. Hayashi Y, Zviman MM, Brand JG, Teeter JH, Restrepo D. 1996. Measurement of membrane potential and $[Ca^{2+}]_i$ in cell ensembles: application to the study of glutamate taste in mouse. Biophys J 71: 1057-1070. https://doi.org/10.1016/S0006-3495(96)79306-2
  62. Stevens JC, Cruz LA, Hoffman JM, Patterson MQ. 1995. Taste sensitivity and aging: high incidence of decline revealed by repeated threshold measures. Chem Senses 20: 451-459. https://doi.org/10.1093/chemse/20.4.451