DOI QR코드

DOI QR Code

Optimization of Extraction Conditions for Lyophyllum ulmarium by Response Surface Methodology

반응표면분석에 의한 만가닥 버섯의 추출조건 최적화

  • Published : 2003.06.01

Abstract

Optimal extraction conditions for yield, browning color, electron donating ability, nitrite scavenging effect, total polyphenol content and tyrosinase inhibitory activity of Lyophyllum ulmarium were determined by using response surface methodology (RSM) through the central composite design. The extraction yield of Lyophyllum ulmarium was effected by ethanol concentration and browning color was improved with the increase of ethanol concentration than microwave power. The nitrite scavenging effect was improved with the increase of ethanol concentration and decrease of microwave power The electron donating ability, browning color, tyrosinase inhibitory activity and total polyphenol content were improved with the increase in ethanol concentration and microwave power. The optimal ranges of extraction conditions for effective components of Lyophyllim ulmarium were predicted as 60.05~102.75 watt of microwave power, 53.20~64.01% of ethanol concentration and 7.77 min of extraction time.

만가닥 버섯 추출물의 수율 및 전자공여작용, 총폴리페놀 함량, tyrosinase 저해작용, 갈색도, 아질산염 소거작용에 대하여 반응표면분석에 의해 추출조건을 최적화하였다. 만가닥 버섯의 경우 수율은 에탄올 농도에 가장 큰 영향을 받았으며, 전자공여작용의 경우 에탄올 농도가 높고 microwave power가 높은 조건에서 높은 추출률을 나타내었다. 갈변도 및 tyrosinase 저해작용의 경우 에탄을 농도가 증가할수록 microwave power가 증가할수록 더욱 크게 나타났다. 아질산염 소거 작용의 경우 에탄을 농도와 추출시간의 조건에 크게 영향을 받지 않는 것으로 판단되었으며 총 폴리페놀 함량은 에탄을 농도가 증가할수록 증가폭이 크고, microwave power가 증가할수록 추출물의 생리활성이 우수한 것으로 나타났다. 따라서 만가닥버섯의 최적 추출조건 범위는 microwave power 60.15~102.75 watt, ethanol 농도 53.20~64.01%, 추출시간 7.77분으로 예측되었다.

Keywords

References

  1. Chang ST, Miles PG. 1989. Edible mushrooms and their cultivation. CRC Press, Boca Raton, FL, USA. p 335.
  2. Breene WM. 1990. Nutritional and medicinal value of specially mushrooms. J Food Prot 53: 883-893.
  3. Kim BK. 1993. Mushroom products. J Microbiol 19: 45-52.
  4. Cochran WG, Cox GM. 1957. Experimental design. 2nd ed. John Wiley & Sons Inc, New York, USA. p 335-375.
  5. Box GEP, Hounter JS. 1957. Multifactor experimental design for exploring response surfaces. Annals Math Stat 28: 195-242. https://doi.org/10.1214/aoms/1177707047
  6. SAS Institute Inc. 1990. SAS user's guide version 6. 4th ed. SAS institude Inc, NC, USA. Vol 2, p 1457-1478.
  7. Motycka PR, Devor RE, Bechtel PJ. 1992. Response surface methodology. J Food Sci 57: 190-196. https://doi.org/10.1111/j.1365-2621.1992.tb05453.x
  8. Lee GD, Jeong YJ. 1999. Optimization on organoleptic properties of red pepper jam by response surface methodology. J Korean Soc Food Sci Nutr 28: 1269-1274.
  9. Box GEP, Wilson KG. 1951. On the experimental attainment of optimum conditions. J Royal Stat Soc 13: 1-45.
  10. Folin O, Denis W. 1912. On phosphotungastic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243.
  11. Kang YH, Park YK, Lee GD. 1996. The nitrite scavenging and electron donating ability of phenolic compounds. Korean J Food Sci Technol 28: 232-239.
  12. Wong TC, Luh BS, Whitaker JR. 1971. Isolation and characterization of polyphenol oxidase of clingstone peach. Plant Physiol 48: 19-23. https://doi.org/10.1104/pp.48.1.19
  13. Gray JI, Dugan JLR. 1975. Inhibition of N-nitrosamine formation in model food system. J Food Sci 40: 981-984. https://doi.org/10.1111/j.1365-2621.1975.tb02248.x

Cited by

  1. Optimization of Extraction Conditions of Pleurotus cornucopiae by Response Surface Methodology vol.43, pp.10, 2014, https://doi.org/10.3746/jkfn.2014.43.10.1565
  2. 볶음 새송이버섯 기능성분의 마이크로웨이브 추출조건 최적화 vol.36, pp.8, 2003, https://doi.org/10.3746/jkfn.2007.36.8.1062