Log-Polar Image Watermarking based on Invariant Centroid as Template

불변의 무게중심을 템플릿으로 이용한 대수-극 좌표계 영상 워터마킹 기법

  • 김범수 (상주대학교 전자전기공학부) ;
  • 유광훈 (경북대학교 전자공학과) ;
  • 김우섭 (경북대학교 전자공학과) ;
  • 곽동민 (경북대학교 전자공학과) ;
  • 송영철 (경북대학교 전자전기공학부) ;
  • 최재각 (동의대학교 컴퓨터공학과) ;
  • 박길흠 (경북대학교 전자전기공학부)
  • Published : 2003.06.01

Abstract

Digital image watermarking is the method that can protect the copyright of the image by embedding copyright information, which is called watermark. Watermarking must have robustness to intentional or unintentional data changing, called attack. The conventional watermarking schemes are robust to waveform attacks such as image compression, filtering etc. However, they are vulnerable to geometrical attacks such as rotation, scaling, translation, and cropping. Accordingly, this paper proposes new watermarking scheme that is robust to geometrical attacks by using invariant centroid. Invariant centroid is the gravity center of a central area in a gray scale image that remains unchanged even when the image is attacked by RST including cropping and proposed scheme uses invariant centroids of original and inverted image as the template. To make geometrically invariant domain, template and angle compensated Log -Polar Map(LPM) is used. Then Discrete Cosine Transform(DCT) is performed and the watermark is embedded into the DCT coefficients. Futhermore, to prevent a watermarked image from degrading due to interpolation during coordinate system conversion, only the image of the watermark signal is extracted and added to the original image. Experimental results show that the proposed scheme is especially robust to RST attacks including cropping.

디지털 영상에서 워터마킹이란 영상의 저작권 보호를 위한 방법이다. 이때 삽입되는 저작권 정보를 워터마크라 하고 이는 외부의 공격을 받더라도 쉽게 제거되지 않아야 한다. 그러나 대부분의 워터마킹 기법이 영상 압축, 필터링 둥의 파형 공격(waveform attack) 에는 강인하나 회전, 크기 변화, 이동, 잘려짐(cropping) 등과 같은 기하학적 공격(geometrical attack) 에 쉽게 깨어지는 단점을 보인다. 본 논문에서는 기하학적 공격에 대한 해결책으로 영상에서 불변의 무게중심(invariant centroid) 을 구하고 이를 템플릿(template) 으로 이용한 대수-극 좌표계 변환과 이산 여현 변환(Discrete Cosine Transform: DCT) 을 사용하여 워터마크를 삽입하고 검출하는 방법을 제안한다. 워터마크가 첨가된 영상에 가해지는 기하학적 공격은 불변의 무게중심과 대수-극 좌표계를 이용한 방법으로 극복하고, 파형 공격은 DCT 변환을 이용하여 해결하였다. 또한 워터마크 정보만을 역 LPM 변환하여 원 영상에 삽입하는 간접 삽입 방법을 사용함으로써 좌표계 변환으로 인한 화질의 열화를 막을 수 있었다. 실험 결과 제안된 방법은 기존의 방법에서 삽입된 워터마크의 검출이 불가능한 잘림을 동반한 기하학적 공격 후에도 워터마크의 검출이 가능하였다.

Keywords

References

  1. C. I. Podilchuk and E. J. Delp, 'Digital watermarking algorithms and applications,' IEEE Signal Processing Magazine, vol.18, pp.33-46, 2001 https://doi.org/10.1109/79.939835
  2. A. Tirkel, G. Rankin, R. van Schyndel, W. Ho, N. Mee, and C. Osborne, 'Electronic watermark,' Proceedings of DICTA, pp.666-672, 1993
  3. R. G. van Schyndel, A. Z. Tirkel, and C. F. Osborne, 'A digital watermark,' Proceedings of ICIP, vol. 2, pp. 86-89, 1994 https://doi.org/10.1109/ICIP.1994.413536
  4. J. R. Hernandez, F. Perez-Gonzalez, J. M. Rodriguez, and G. Nieto, 'Performance analysis of a 2-D multipulse amplitude modulation scheme for data hiding and watermarking still images,' IEEE Journal on Selected Areas in Communications, vol. 16, no. 4, pp. 510-524, 1998 https://doi.org/10.1109/49.668974
  5. M. Kutter, F. Jordan, and F. Bossen, 'Digital signature of color images using amplitude modulation,' Journal of Electronic Imaging, vol. 7, no. 2, pp. 326-332, 1998 https://doi.org/10.1117/1.482648
  6. I. Pitas, 'A method for watermark casting on digital images,' IEEE Transactions on Circuits and Systems for Video Technology, vol. 8, no. 6, pp. 775-780, 1998 https://doi.org/10.1109/76.728421
  7. J. R. Hernandez Martin and M. Kutter, 'Information retrieval in digital watermarking,' IEEE Communications Magazine, vol. 39, pp. 110-116, 2001 https://doi.org/10.1109/35.940051
  8. I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, 'Secure spread spectrum watermarking for multimedia,' IEEE Transactions on Image Processing, vol. 6, no. 12. pp. 1673-1687, 1997 https://doi.org/10.1109/83.650120
  9. M. Barni, F. Bartolini, V. Cappellini, and A. Piva, 'A DCT-domain system for robust image watermarking,' Signal processing, vol. 66, pp. 357-372, 1998 https://doi.org/10.1016/S0165-1684(98)00015-2
  10. J. J. K. Ruanaidh, W. J. Dowling, and F. M. Boland, 'Phase watermarking of digital images,' Proceedings of ICIP, vol. 3, pp. 239-242, 1996 https://doi.org/10.1109/ICIP.1996.560428
  11. I. J. Cox, J. Kilian, T. Leighton, and T. Hammon, 'A secure, robust watermark for multimedia,' Proceedings of Workshop on Information Hiding, vol. 1, pp. 244-250, 1992
  12. C. I. Podilchuk and W. Zeng, 'Image-adaptive watermarking using visual models,' IEEE Journal on Selected Areas in Communications, vol. 16, no. 4, pp. 525-539, 1998 https://doi.org/10.1109/49.668975
  13. H. Wang and C. C. J. Kuo, 'An integrated progressive image coding and watermarking system,' Proceedings of ICASSP, vol. 6, pp. 3721-3723, 1998 https://doi.org/10.1109/ICASSP.1998.679692
  14. D. Kundur and D. Hatzinakos, 'A robust digital image watermarking method using wavelet-based function,' Proceedings of ICIP, vol. 1, pp. 544-547, 1997
  15. M. Barni, F. Bartolini, V. Capellini, A. Lippi, and A. Piva, 'A DWT-based technique for spatio-frequency masking of digital signatures,' Proceedings of SPIE, vol. 3657, Electronic Imaging, 1999
  16. J. J. K. O'Ruanaidh and T. Pun, 'Rotation, scale and translation invariant digital image watermarking,' Proceedings of ICIP, vol. 1, pp. 536-539, 1997 https://doi.org/10.1109/ICIP.1997.647968
  17. S. Pereira, J. J. K. O'Ruanaidh, and F. Deguillaume, 'Template based recovery of Fourier-based watermarks using log-polar and log-log maps,' Proceedings of ICMCS, vol. 1, pp. 870-874, 1999 https://doi.org/10.1109/MMCS.1999.779316
  18. S. Pereira and T. Pun, 'Robust template matching for affine resistant image watermarks,' IEEE Transactions on Image Processing, vol. 9, no. 6, 2000 https://doi.org/10.1109/83.846253
  19. R. Caldelli, M. Barni, F. Bartolini, and A. Piva, 'Geometric-invariant robust watermarking through constellation matching in the frequency domain,' Proceedings of ICIP, vol. 2, pp. 65-68, 2000 https://doi.org/10.1109/ICIP.2000.899227
  20. R. B. Wolfgang, C. I. Podilchuk, and E. J. Delp, 'Perceptual watermarks for digital images and video,' Proceedings of The IEEE, vol. 87, no. 7, pp. 1108-1126, 1999 https://doi.org/10.1109/5.771067
  21. J. R. Hernandez and F. Perez-Gonzalez, 'Statistical Analysis of Watermarking Scheme for copyright protection of images,' Proceedings of The IEEE, vol. 87, no. 7, pp. 1142-1166, 1999 https://doi.org/10.1109/5.771069
  22. J. Huang, and Y. Q. Shi, 'Adaptive image watermarking scheme based on visual masking,' Electronic Letters, vol. 34, no. 8, pp. 748-750, 1998 https://doi.org/10.1049/el:19980545
  23. C-T. Hsu, and J-L, Wu, 'Hidden digital watermark in images,' IEEE Transactions on Image Processing, vol. 8, no. 1, pp. 58-68, 1999 https://doi.org/10.1109/83.736686
  24. S. Burgett, E. Koch, and J. Zhao, 'Copyright labeling of digitized image data,' IEEE Communication Magazine, vol. 36, pp. 94-100, 1998 https://doi.org/10.1109/35.663333
  25. A. Piva, M. Barni, F. Bartolini and V. Cappellini, 'DCT-based watermark recovering without resorting to the uncorrupted original image,' Proceedings of ICIP, vol. 1, pp. 520-523, 1997 https://doi.org/10.1109/ICIP.1997.647964
  26. M. Alghoniemy and A. H. Tewfik, 'Geometric distortion correction through image normalization,' Proceedings of ICME, vol. 3, pp. 1291-1294, Jul. 2000 https://doi.org/10.1109/ICME.2000.871003
  27. Proceedings of ICME v.3 Geometric distortion correction through image normalization M.Alghoniemy;A.H.Tewfik