A NOTE ON WEAK CONVERGENCE OF EMPIRICAL PROCESSES FOR A STATIONARY PHI-MIXING SEQUENCE

  • Published : 2003.06.01

Abstract

A new result of weak convergence of the empirical process is established for a stationary ${\phi}-mixing$ sequence of random variables, which relaxes the existing conditions on mixing coefficients. The result is basically obtained from bounds for even moments of sums of ${\phi}-mixing$ r.v.'s useful for handling triangular arrays with entries decreasing in size.

Keywords

References

  1. Cinvergence of Probability Measures Billingsley,P.
  2. COX, D. AND KlM, T. Y. (1995). 'Moment bounds for mixing random variables useful in nonparametric function estimation', Stochastic Processes and Their Applications, 56, 151-158 https://doi.org/10.1016/0304-4149(94)00063-Y
  3. DOUKHAN, P., LEON, J. AND PORTAL, F. (1984). 'Vittesse de convergence dans le theoreme central limite pour des variables aleatorie mealngeantes a valeurs un espace de Hilbert', Compterendus de l'Academie Sciences de Paris, 298, 305-308
  4. IBRAGIMOV, I. A. (1962). 'Some limit theorems for stationary processes', Theory of Probabilty and Its Applications, 7, 361-392
  5. IBRAGIMOV, I. A. (1975). 'A remark on the central limit theorem for dependent random variables', Theory of Probability and Its Applications, 20, 135-140 https://doi.org/10.1137/1120011
  6. SEN, P. K. (1971). 'A note on weak convergence of empirical processes for $\phi$-mixing random variables', The Annals of Mathematical Statistics, 42, 2131-2133 https://doi.org/10.1214/aoms/1177693079
  7. TRUONG, Y. K. AND STONE, C. J. (1992). 'Nonparametric function estimation involving time series', The Annals of Statistics, 20, 77-97 https://doi.org/10.1214/aos/1176348513
  8. YOKOYAMA, R. (1980). 'A note on weak convergence of empirical processes for $\phi$-mixing variables', Yokohama Mathematical Journal, 28, 37-40
  9. YOSHlHARA, K. (1974). 'Extensions of Billingsley's theorems on weak convergence of empirical processes', Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete, 29, 87-92 https://doi.org/10.1007/BF00533190
  10. YOSHlHARA, K. (1978). 'Note on multidimensional empirical processes for $\phi$-mixing random vectors', Journal of Multivariate AnaIysis, 8, 584-588 https://doi.org/10.1016/0047-259X(78)90037-4
  11. YU, B. (1993). 'Density estimation in the $L^\infty$ norm for dependent data with applications to the Gibbs sampler', The Annals of Statistics, 21, 711-735 https://doi.org/10.1214/aos/1176349146