References
- Australian Journal of Statistics v.17 Optimum tests for the comparison of two inverse Gaussian distribution means Chhikara,R.S. https://doi.org/10.1111/j.1467-842X.1975.tb00940.x
- CHHIKARA, R. S. AND FOLKS, L. (1989). The Inverse Gaussian Distribution : Theory, Methodology and Applications, Marcel Dekker, New York
- CHOI, B. AND KiM, K. (2001). 'Maximum likelihood estimator in two inverse Gaussian popu-lations with unknown common coefficient of variation', Journal of the Korean StatisticalSociety, 30, 99-113
- DAVIS, A. S. (1980). 'Use of the likelihood ratio test on the inverse Gaussian distribution', The American Statistician, 34, 108-110 https://doi.org/10.2307/2684116
- HSIEH, H. K. (1990). 'Inferences on the coefficient of variation of an inverse Gaussian distri bution', Communications in Statistics- Theory and Methods, 19, 1589-1605 https://doi.org/10.1080/03610929008830279
- MlCHAEL, J. R., SCHUCANY, W. R. AND HAAS, R. W. (1976). 'Generating random variates using transformations with multiple roots', The American Statistician, 30, 88-90 https://doi.org/10.2307/2683801
- RAO, C. R. (1973). Linear Statistical Inference and Its Applications, Wiley, New York
- TWEEDIE, M. C. K. (1957a). 'Statistical properties of inverse Gaussian distributions I', The Annals of MathematicaI Statistics, 28, 362-377 https://doi.org/10.1214/aoms/1177706964
- TWEEDIE, M. C. K. (1957b). 'Statistical properties of inverse Gaussian distributions II', The AnnaIs of Mathematical Statistics, 28, 696-705 https://doi.org/10.1214/aoms/1177706881
- WALD, A. (1943). 'Tests of statistical hypotheses concerning several parameters when the number of observations is large', Transactions of the American Mathematical Soctety, 54. 426-482 https://doi.org/10.2307/1990256