Use of a Xanthine-Xanthine Oxidase System on in vitro Maturation and Fertilization in the Pig

돼지난자의 체외성숙과 수정에 있어서 Xanthine-Xanthine Oxidase System의 이용

  • Sa, S. J (College of Animal Resource Science, Kangwon University) ;
  • H. T. Cheong (College of Animal Resource Science, Kangwon University) ;
  • Lee, S. Y. (Advanced Swine Research Institute, Sanchung) ;
  • Lee, J. H. (National Livestock Research Institute, Seonghwan) ;
  • I. S. Ryu (National Livestock Research Institute, Seonghwan) ;
  • B. K. Yang (College of Animal Resource Science, Kangwon University) ;
  • Kim, C. I. (College of Animal Resource Science, Kangwon University) ;
  • Park, C. K. (College of Animal Resource Science, Kangwon University)
  • Published : 2003.03.01

Abstract

This study was undertaken to evaluate the effects of catalase using xanthine (X)-xanthine oxidase (XO) system on in vitro maturation and fertilization in the pig. When follicular oocytes were cultured with X or XO, the maturation rates were not significantly different between in medium with and without catalase despite of different culture periods. However, significantly (P<0.05) higher maturation rates were obtained in culture with X-XO-catalase system. The rates of degenerated oocytes were increased with culture periods prolonged, and were significantly (P<0.05) higher in medium without that than with catalase at 120 h of culture. On the other hand, the parthenogenetic oocytes were observed with high proportions at 72 h of culture, but were not different between the medium with and without catalase at various times of culture. In another experiment, the frozen-thawed boar spermatozoa treated with X-XO system for in vitro fertilization. The penetration rates were higher in medium with that than without catalase during the in vitro fertilization with none (P<0.05), XO and X+XO. On the other hand, when sperm were treated with none, X, XO and X+XO, lipid peroxidation were produced with higher rates in medium without that than with catalase, and consequently the changes in sperm penetration and lipid peroxidation showed opposite patterns. Under the above all conditions, however, sperm-SH group were higher detected by catalase. When the activity of sperm binding to zona pellucida was evaluated through binding to salt-stored porcine oocytes, sperm binding to zona pellucida in control group were higher than in medium with X, XO and X+XO groups. No significant differences, however, were observed between medium with and without catalase. In conclusion, the exposure of follicular oocytes and spermatozoa to X-XO-catalase system may be caused stimulating in vitro maturation and fertilization in the pig.

본 연구는 xanthine(X)-xanthine oxidase(XO) system하에서 돼지 난자의 체외성숙과 체외수정에 대한 catalase의 영향을 검토하였다. 그 결과 돼지 난포난자가 X 또는 XO하에서 배양되었을 때, 난포난자의 성숙율은 다른 배양시간에도 불구하고 catalase 첨가 유무에 따른 유의적인 차이를 나타내지 않았다. 그렇지만, X-XO-catalase system하에서 배양한 경우 유의적으로 높은 성숙율을 얻었다(P<0.05). 퇴행난자의 비율은 배양기간이 늘어남에 따라 증가되었으며, 배양 120시간에서는 catalase 첨가시보다 무첨가시에 유의적으로 높았다. 다른 한편으로, 단위발생 난자들이 배양 72시간에 높은 비율로 관찰되었지만, 다양한 배양시간에서 catalase 첨가유무에 따른 차이는 발견되지 않았다. 또 다른 실험에서, 동결-응해된 돼지 정자가 체외수정을 위해 X-XO system으로 처리되었다. 난자투명대에 대한 정자침입율은 none (P<0.05), XO, X+XO하에서 체외수정시 catalase 무첨가시보다 첨가시에 높게 나타났다. 다른 한편으로, 돼지정자가 none, X, XO, X+XO로 처리되었을 때, lipid peroxidation은 catalase 첨가시보다 무첨가시에 높은 비율로 나타났으며, 그 결과 정자침입과 lipid peroxidation에서의 변화가 상반되는 양상을 보였다. 그렇지만, 모든 조건하에서 정자의 sulfhydry (-SH) group의 함량은 catalase 첨가시에 높게 측정되었다. 난자의 투명대에 대한 정자의 접착 정도는 salt-stored 돼지 난자에 대한 정자접착을 통해서 평가되었으며, control group의 경우 X, XO, X+XO group에 비해 높은 정자접착율이 관찰되었다. 그렇지만, catalase 첨가유무에 따른 유의적인 차이는 인정되지 않았다. 본 연구의 결과는 X-XO-catalase system에 대한 난포난자와 정자의 노출이 돼지에서의 체외성숙과 체외수정을 촉진시키는 것으로 생각된다.

Keywords

References

  1. Aitken, R. J. 1994. A free radical theory of male infertility. Reprod. Fertil. Dev., 6:19-24 https://doi.org/10.1071/RD9940019
  2. Aitken, R. J. and Clarkson, J. S. 1987. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J. Reprod. Fertil., 81:459-469 https://doi.org/10.1530/jrf.0.0810459
  3. Aitken, R. J., Clarkson. J. S. and Fishel, S. 1989. Generation of reactive oxygen species, lipid peroxidation and human sperm function, BioI. Reprod., 40:183-197
  4. Aitken, J. and Fisher, H. 1994. Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. Bioessays, 16:259-267 https://doi.org/10.1002/bies.950160409
  5. Aitken, R. J., Harkiss, D. and Buckingham, D. W. 1993. Analysis of lipid peroxidation mechanism in human spermatozoa. Mol. Reprod. Dev., 35:302-315 https://doi.org/10.1002/mrd.1080350313
  6. Aitken, R. J., Irvine, D. S. and Wu, F. C. 1991. Prospective analysis of sperm-oocyte fusion and reactive oxygen species generation as criteria for the diagnosis of infertility. Am. J. Obstet. Gynecol., 164:542-551 https://doi.org/10.1016/S0002-9378(11)80017-7
  7. Alvarez, J. G..ind Storey B. T. 1982, Spontaneous lipid peroxidation in rabbit epididymal spermatozoa: its effect on sperm motility. Biol. Reprod., 27:1102-1108
  8. Block, E. R. 1991. Hydrogen peroxide alters the physical state and function of the plasma membrane of pulmonary artery endotherial cells. J. Cell. Physiol., 146:362-369 https://doi.org/10.1002/jcp.1041460305
  9. Bulkley, G. B. 1987. Free radical-mediated reperfusion injury: a selective review. Br. J. Cancer, 55:66-73(Suppl)
  10. Burkman, L. J. 1990. Hyperactivated motility of human spermatozoa during in vitro capacitation and implications for fertility. In Gagnon, C.(ed.). Controls of Sperm Motility. CRC Press, Boca Raton 303-329
  11. Chian, R. C., Nakahara, H., Niwa, K. and Funahashi, H. 1992. Fertilization and early cleavage in vitro of ageing bovine oocytes after maturation in culture. Theriogenology, 37:665 -672
  12. de Lamirande, E. and Gagnon, C. 1992a. Reactive oxygen species and human spermatozoa: I. Effects on the motility of intact spermatozoa and on sperm axonemes. J. Androl., 13:368-37
  13. de Lamirande, E. and Gagnon, C. 1992b. Reactive oxygen species and human spermatozoa. II. Depletion of adenosine-triphosphate (ATP) plays an important role in the inhibition of sperm motility. J. Androl., 13:379-386
  14. de Lamirande, E. and Gagnon, C. 1993. Human sperm hyperactivation and capacitation as parts of an oxidative process. Free. Radic. BioI. Med., 14:157-166 https://doi.org/10.1016/0891-5849(93)90006-G
  15. de Lamirande, E. and Gagnon, C. 1995. Capacitation associated production of superoxide anion by human spermatozoa. Free. Radic. BioI. Med., 18:487-495 https://doi.org/10.1016/0891-5849(94)00169-K
  16. Di-Simplicio, P., Cheeseman, K. H. and Slater, T. F. 1991. The reactivity of the SH group of bovine serum albumin with free radicals. Free. Radical. Res. Commun., 14:253-262 https://doi.org/10.3109/10715769109088954
  17. Fornes, M. W., Barbieri, A. M. and Burgos, M. H. 1993. Sperm motility loss induced by gossypol: relation with OH scavengers, motile stimulators and malondialdehyde. Biochem. Biophys. Res. Commun. 195:1289-1293 https://doi.org/10.1006/bbrc.1993.2183
  18. Griveau, J. F., Dumont, E., Renard, P., Callegari, J. P. and Le Lannou, D. 1995. Reactive oxygen species, lipid peroxidation and enzymatic defence systems in human spermatozoa. J. Reprod. Fertil., 103:17-26
  19. Hong, C. Y., Lee, M. F., Lai, L. J and Wang, C. P. 1994. Effect of lipid peroxidation on beating frequency of human sperm tail. Andrologia, 26:61-65 https://doi.org/10.1111/j.1439-0272.1994.tb00757.x
  20. Hunter, R. H. F. 1967. The effects of delayed insemination on fertilization and early cleavage in the pig. J Reprod. Fertil., 13:133-147 https://doi.org/10.1530/jrf.0.0130133
  21. Ikeda, M., Kodama, H., Fukuda, J, Shimizu, Y., Murata, M., Kumagai, J. and Tanaka, T. 1999. Role of radical oxygen species in rat testicular germ cell apoptosis induced by heat stress. BioI. Reprod., 61:393-399 https://doi.org/10.1095/biolreprod61.2.393
  22. Iwasaki, A. and Gagnon, C. 1992. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil, Steril., 57:409-416
  23. Kikuchi, K., Izaike, Y., Noguchi, J, Furukawa,T., Dean F. P., Naito, K. and Toyoda, Y. 1995. Decrease of histone H1 kinase activity in relation to parthenogenetic activation of pig follicular oocytes matured and aged in vitro. J. Reprod. Fertil., 105:325-330 https://doi.org/10.1530/jrf.0.1050325
  24. Kubiak, J. Z. 1989. Mouse oocytes gradually develop the capacity for activation during the metaphase-II arrest. Develop. BioI., 136:537- 545 https://doi.org/10.1016/0012-1606(89)90279-0
  25. Mammoto, A., Masumoto, N., Tahara, M., Ikebuchi, Y., Ohmichi, M., Tasaka, K. and Miyake, A. 1996. Reactive oxygen species block sperm-egg fusion via oxidation of sperm sulfhydryl proteins in mice. BioI. Reprod., 55:1063-1068
  26. Myles, D. G. 1993. Molecular mechanisms of sperm-egg membrane binding and fusion in mammalians. Dev. BioI., 158:35-45 https://doi.org/10.1006/dbio.1993.1166
  27. Nagai, T. 1987. Parthenogenetic activation of cattle follicular oocytes in vitro with ethanol. Gamete, 16:243-249 https://doi.org/10.1002/mrd.1120160306
  28. Sato, E., Iritani, A. and Nishikawa, Y. 1979. Formation of nucleus' and 'Cleavage'of pig follicular oocytes cultured in vitro. Jpn. J. Anim. Reprod., 25:95-99
  29. Synder, L. M., Fortier, N. L., Leb, L., McKenney, J, Trainor, J, Sheerin, H. and Mohandas, N. 1988. The role of membrane protein sulfhydryl groups inhydrogen peroxidemembrane damage in human erythrocytes. Biochim. Biophys. Acta., 937:229-240 https://doi.org/10.1016/0005-2736(88)90245-3
  30. Weiss, S. J. 1986. Oxygen, ischemia and inflammation. Acta. Physiol. Scand., 548:9-37 (Suppl)