The Effect of PAA on the Characterization of PVA/SSA ion Exchange Membranes

Poly(vinyl alcohol)/sulfo-succinic acid 이온교환막에 poly(acrylic acid)첨가에 따른 특성 연구

  • 임지원 (한남대학교 공과대학 화학공학과) ;
  • 천세원 (한남대학교 공과대학 화학공학과) ;
  • 홍상혁 (한남대학교 공과대학 화학공학과) ;
  • 황호상 (한남대학교 공과대학 화학공학과) ;
  • 정성일 (한남대학교 공과대학 화학공학과)
  • Published : 2003.06.01

Abstract

The ion exchange membranes prepared from the reaction between poly(vinyl alcohol) (PVA) which is known as the good methanol barrier in pervaporation membrane processes and sulfo-succinic acid (SSA) was used as the basic membranes. In order to improve the ion exchange capacity, poly(acrylic acid) (PAA) was added to this ion exchange membranes. The methanol permeabilities, ion conductivities, water contents and ion exchange capacity were measured for the resulting membranes with varying PAA contents. In general, methanol permeability and ion conductivity of PVA/SSA/PAA membranes were less than those of PVA/SSA membranes due to the reduction of free volumes resulted from crosslinking. The vehicle mechanism could be more dominant than jump mechanism for membranes in question.

막소재는 투과증발 막공정에서 메탄을 저항체로 잘 알려진 Poly(vinyl alcohol, PVA)과 술폰기가 있는 가교제 sulfo-succinic acid(SSA)를 PVA에 대해 17 wt.%로 고정시켜 제조하였다. 이에 이온교환능력을 향상시키기 위해 양이온교환기가 포함된 poly(acrylic acid, PAA)를 첨가하여 함량변화에 따라 메탄올투과도 (methanol permeability) 특성과 이온전도도(ion conductivity)를 측정하였으며, 기본적인 이온교환막의 특성인 함수율 (water content), 이온교환용량 (ion exchange capacity, IEC) 등을 측정하였다. PAA함량에 따른 메탄을 투과도와 이온전도도 결과는 SSA만을 사용했을 때 보다 전체적으로 감소하는 경향을 나타났는데 이는 PAA의 함량 증가를 통하여 가교도의 증가로 인한 자유부피감소가 카르복실기인 양이온교환기 도입 영향보다 더 크게 작용한 것으로 판단된다 이온전도도와 메탄올투과도의 결과로부터 'vehicle mechanism'이 본 실험에서 제조된 PVA/SSA/PAA막에서 더 우세한 영향을 미쳤을 것이라 사료된다.

Keywords

References

  1. Fuel Cells Bulletins v.12 J.Stephens
  2. Transport Phenomena in Membranes N.Lakshminarayanaiah
  3. Membrane Separations Technology Richard D. Noble
  4. Membrane Handbook W. S. Winston Ho;Kamalesh k. Sikar
  5. Synthetic Polymeric Membranes R.E.Kesting
  6. Membrane J. v.8 Pervaporation separation of MTBE-methanol mixture using PVA/PAA crosslinked membranes J.W.Rhim;Y.K.Kim
  7. Membrane J. v.11 Salt effect of metal ion substituted membranes for water-alcohol systems using pervaporation processes J.W.Rhim;J.H.Jun
  8. Membrane J. v.12 Studies on the methanol permeability through PVA/SSA ion exchange membranes substituted with various metal cations C.S.Lee;S.Y.Jung;J.H.Jun;H.S.Shin;J.W.Rhim
  9. Membrane J. v.12 Preparation and characterization of ion exchange membrane for direct methanol fuel cell(DMFC) using sulfonated polysulfone H.S.Shin;C.S.Lee;J.H.Jun;S.Y.Jung;J.W.Rhim;S.Y.Nam
  10. Membrane J. v.12 Pervaporation separation of aqueous ethanol solution through poly(vinyl alcohol) Membranes crosslinked poly(acrylic acid-co-maleic acid) S.Y.Nam;K,S,Sung;S.W.Cheon;J.W.Rhim
  11. J. Membr. Sci. Proton conductivity and methanol permeability of crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group J.W.Rhim;H.B.Park;C.S.Lee;J.H.Jun;Y.M.Lee
  12. M.S. Thesis Studies on the preparation of the poly(vinyl alcohol) ion exchange membranes for direct methanol fuel cell J.H.Jun
  13. J. Electrochem. Sci. v.145 Proton and methanol transport in poly(perfluorosulfonate) membranes containing C$s^ +$ and $H^ +$ cations V.Tricoli
  14. Diffusion E.L.Cussler
  15. 膜學實驗法 中垣正幸
  16. J. Membr. Sci. v.156 Ion exchange membrane based on block copolymers part Ⅲ:preparation of cation exchange membrane G.J.Hwang;Toshiyuki Nagai
  17. Separation and Purification Technology v.14 W.Cui;J.Kerres;G.Eigenberger
  18. Basic priciples of membrane technology M.Mulder
  19. J. Membr. Sci. v.154 Pervaporation membranes in direct methanol fuel cells Bryan S. Pivovar;Yuxin Wang;E.L.Cussler
  20. J. A. Electrochem v.29 T.Lehtinen;G.Sunholm
  21. J. Membr. Sci. v.154 Sulfonated and crosslinked polyphosphazenebased proton-exchange membranes Qunhui Guo;Sally O'Connor;Peter N. Pintauro;Hao Tang
  22. J. Membr. Sci. v.166 Ionomeric membranes based on partially sulfonated poly(styrene):synthesis,proton conduction and methanol permeation N.Carretta;V.Trocoli;F.Picchioni
  23. J. Power Sources v.96 Modification of proton conducting membrane for reducing methanol crossover in a direct-metanol fuel cell Won Choon Choi;Seong Ihl Woo
  24. J. Power Sources v.84 A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells A.Heinzel;V.N.Barragan
  25. J. Electroanalytical Chem. v.414 Studies on ion-exchange membranes. Part 1. Effect of humidity on the conductivity of Nafion $\circlering R$ A.V.Anantaraman;C.L.Gardner
  26. J. Membr. Sci. v.160 Sulfonated polymides as proton conductor exchange membranes. Physicochemical properties and separation $H^ +$/$M^ z+$ by electrodialysis comparison with a perporosulfonic membrane Elena Vallejo;Michel Pineri