DOI QR코드

DOI QR Code

Observation of Parametric Resonance in a Magneto-Optical Trap

  • Jhe, Won-Ho (School of Physics and Center for Near-field Atom-photon Technology, Seoul National University) ;
  • Noh, Heung-Ryoul (Department of physics, Chonnam National University) ;
  • Kim, Ki-Hwan (School of Physics and Center for Near-field Atom-photon Technology, Seoul National University) ;
  • Ha, Hyun-Ji (School of Physics and Center for Near-field Atom-photon Technology, Seoul National University)
  • Received : 2003.03.03
  • Published : 2003.06.01

Abstract

We demonstrate parametric resonance in a magneto-optical trap. When we modulate the intensity of the cooling laser at about twice the resonant frequency of the trap, the atoms in the trap are divided into two parts and oscillate with 180 degree phase difference with the finite length due to nonlinearity of the trap potential. These are the effects of general nonlinear dynamics, called the Hopf bifurcation, or limit cycle motion. The amplitude and the phase of the oscillations are measured and compared with the theoretical calculations based on simple Doppler cooling theory. The experimental results are in excellent agreement with the simulation results based on the simple Doppler cooling theory.

Keywords

References

  1. E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, “Trapping of Neutral Sodium Atoms with Radiation Pressure,” Phys. Rev. Lett., vol. 59, no. 23, pp. 2631-2634, 1987. https://doi.org/10.1103/PhysRevLett.59.2631
  2. J. Dalibard and C. C.-Tannoudji, “Laser Cooling Below the Doppler Limit by Polarization Gradients - Simple Theoretical Models,” J. Opt. Soc. Am. B, vol. 6, no. 11, pp. 2023-2045, 1989. https://doi.org/10.1364/JOSAB.6.002023
  3. P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, “Optical Molasses,” J. Opt. Soc. Am. B, vol. 6, no. 11, pp. 2084- 2107, 1989. https://doi.org/10.1364/JOSAB.6.002084
  4. C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Steane, P. Szriftgiser, H. Perrin, and J. Dalibard, “Phase-Space Density in the Magnetooptical Trap,” Phys. Rev. A, vol. 52, no. 2, pp. 1423-1440, 1995. https://doi.org/10.1103/PhysRevA.52.1423
  5. D. Wilkowski, J. Ringot, D. Hennequin, and J. C. Garreau, “Instabilities in a Magneto-Optical Trap: Noise-Induced Dynamics in an Atomic System,” Phys. Rev. Lett., vol. 85, no. 9, pp. 1839-1842, 2000. https://doi.org/10.1103/PhysRevLett.85.1839
  6. T. Walker, D. Sesko, and C. Wieman, “Collective Behavior of Optically Trapped Neutral Atoms,” Phys. Rev. Lett., vol. 64, no. 4, pp. 408-411, 1990. https://doi.org/10.1103/PhysRevLett.64.408
  7. S. Friebel, C. D'Andrea, J.Walz, M.Weitz, and T.W. H¨ansch, “$CO_2$-laser optical lattice with cold rubidium atoms,” Phys. Rev. A, vol. 57, no. 1, pp. R20-R23, 1998. https://doi.org/10.1103/PhysRevA.57.R20
  8. J. Tan and G. Gabrielse, “Synchronization of Parametrically Pumped Electron Oscillators with Phase Bistability,” Phys. Rev. Lett., vol. 67, no. 22, pp. 3090-3093, 1991 https://doi.org/10.1103/PhysRevLett.67.3090
  9. J. Tan and G. Gabrielse, ”Parametrically Pumped Electron Oscillators,” Phys. Rev. A, vol. 48, no. 4, pp. 3105-3121, 1993. https://doi.org/10.1103/PhysRevA.48.3105
  10. L. J. Lapidus, D. Enzer, and G. Gabrielse, 'Stochastic Phase Switching of a Parametrically Driven Electron in a Penning Trap,' Phys. Rev. Lett., vol. 83, no. 5, pp. 899-902, 1999 https://doi.org/10.1103/PhysRevLett.83.899
  11. C. H. Tseng, D. Enzer, G. Gabrielse, and F. L.Walls, “1-bit memory using one electron: Parametric oscillations in a Penning trap,” Phys. Rev. A, vol. 59, no. 3, pp. 2094-2104, 1999. https://doi.org/10.1103/PhysRevA.59.2094
  12. L. J. Lapidus, D. Enzer, and G. Gabrielse, “Stochastic Phase Switching of a Parametrically Driven Electron in a Penning Trap,” Phys. Rev. Lett., vol. 83, no. 5, pp. 899-902, 1999. https://doi.org/10.1103/PhysRevLett.83.899
  13. L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon, London, UK, 1976).
  14. N. H. Nayfeh and D. T. Moore, Nonlinear Oscillations (Wiley, New York, USA, 1979). https://doi.org/10.1016/S0370-1573(02)00016-9
  15. S. H. Strogatz, Nonlinear Dynamics and Chaos (Perseus, New York, USA, 2001).
  16. S. Chang and V. Minogin, “Density-matrix approach to dynamics of multilevel atoms in laser fields,” Phys. Rep., vol. 365, pp. 65-143, 2002. https://doi.org/10.1016/S0370-1573(02)00016-9