DOI QR코드

DOI QR Code

The Fabrication of a Photonic Crystal Fiber and Measurement of its Properties

  • Kim, Jin-Chae (Department of Information and Communications, Kwangju Institute of Science and Technology) ;
  • Kim, Ho-Kyung (Department of Information and Communications, Kwangju Institute of Science and Technology) ;
  • Paek, Un-Chul (Department of Information and Communications, Kwangju Institute of Science and Technology) ;
  • Lee, Byeong-Ha (Department of Information and Communications, Kwangju Institute of Science and Technology) ;
  • Eom, Joo-Beom (Korea Photonuc Technology Institute)
  • 투고 : 2003.04.04
  • 발행 : 2003.06.01

초록

In this paper, we describe the fabrication process of a photonic crystal fiber and present the measured optical properties of the photonic crystal fiber. The fabrication of the photonic crystal fiber involves stacking, jacketing, collapsing, and drawing using a conventional drawing tower The photonic crystal fiber drawing needs higher tension to maintain the uniform air hole structure. Thus, the temperature of the photonic crystal fiber drawing is lowered by a few hundred degrees Celsius than for the case of conventional optical fiber drawing. The optical properties of the fabricated photonic crystal fiber such as mode profile, optical loss, transmission spectrum, bending loss, and polarization dependent loss are measured.

키워드

참고문헌

  1. J. C. Knight, T. A. Birks, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, no. 13, pp. 961−963, 1997. https://doi.org/10.1364/OL.22.000961
  2. T. M. Monro, D. J. Richarson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: An efficient modal model,” IEEE J. Lightwave Technol., vol. 17, no. 6, pp. 1093−1102, 1999. https://doi.org/10.1109/50.769313
  3. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett., vol. 34, no. 13, pp. 1347−1348, 1998. https://doi.org/10.1049/el:19980965
  4. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using singlematerial fibers,” IEEE Photon. Technol. Lett., vol. 11, no. 6, pp. 674−676, 1999. https://doi.org/10.1109/68.766781
  5. M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fiber,” Electron. Lett., vol. 35, no. 1, pp. 63−64, 1999. https://doi.org/10.1049/el:19990055
  6. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett., vol. 23, no. 21, pp. 1662−1664, 1999. https://doi.org/10.1364/OL.23.001662
  7. J. Kim, U.-C. Paek, D. Y. Kim, and Y. Chung, “Analysis of the dispersion properties of holey optical fibers using normalized dispersion,” in Optical Fiber Communication Conference vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), WDD86. https://doi.org/10.1109/OFC.2001.928538
  8. W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett., vol. 36, no. 1, pp. 53−54, 2000. https://doi.org/10.1049/el:20000134
  9. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: Measurement and future opportunities,” Opt. Lett., vol. 24, pp. 1395−1397, 1999; Opt. Lett., vol. 24, no. 20, p. 1647, 1999. https://doi.org/10.1364/OL.24.001647
  10. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, “Cladding-mode-resonances in air-silica microstructure optical fiber,” J. Lightwave Technol., vol. 18, no. 8, pp. 1084−1100, 2000. https://doi.org/10.1109/50.857754
  11. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett., vol 25, no. 18, pp. 1325−1327, 2000. https://doi.org/10.1364/OL.25.001325
  12. B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U.-C. Paek, and G.-H. Yang, “Photonic crystal fiber coupler,” Opt. Lett., vol. 27, no. 10, pp. 812−814, 2002. https://doi.org/10.1364/OL.27.000812
  13. J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett., vol. 25, no. 1, pp. 25−27, 2000. https://doi.org/10.1364/OL.25.000025
  14. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Opt. Lett., vol. 26, no. 17, pp. 1356−1358, 2001. https://doi.org/10.1364/OL.26.001356
  15. A. K. Varshneya, Fundamentals of inorganic glasses (Academic press, New York, 1994).
  16. Y. Dogu, and D. A. Kaminski, “Effects of eccentricity on glass temperature in the neck-down stage of the optical fiber drawing process,” Proceedings of the ASME Heat Transfer Division, vol. 1, pp. 89−100, 1997.
  17. T. Sorensen, J. Broeng, A. Bjarklev, E. Kundsen, and E. E. Barkou Libori, “Macro-bending loss properties of photonic crystal fibre,” Electron. Lett., vol. 37, no. 5, pp. 287−288, 2001. https://doi.org/10.1049/el:20010227
  18. J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc. Am. A, vol. 15, no. 3, pp. 748−752, 1998. https://doi.org/10.1364/JOSAA.15.000748
  19. M. C. Carlson, “Measuring Polarization-Dependent Loss with the IQ-12004B DWDM Passive Component Test System,” EXFO Application Note, ANOTE050.1AN, 2001, http://documents.exfo.com/appnotes/anote050an.pdf.

피인용 문헌

  1. Spatial Resolution Enhancement with Fiber - based Spectral Filtering for Optical Coherence Tomography vol.7, pp.4, 2003, https://doi.org/10.3807/JOSK.2003.7.4.216
  2. Tunable photonic crystal fiber coupler based on a side-polishing technique vol.29, pp.11, 2004, https://doi.org/10.1364/OL.29.001194
  3. Fast response in-line gas sensor using C-type fiber and Ge-doped ring defect photonic crystal fiber vol.21, pp.12, 2013, https://doi.org/10.1364/OE.21.014074