DOI QR코드

DOI QR Code

Dependence of the Transmission Characteristics of Photonic Crystal Fiber on the Macrobending Radius and the Mechanically Induced Microbending

  • Lee, Byeong-Ha (Department of Information and Communications Kwangju Institute of Science and Technology) ;
  • Moon, Dae-Seung (Department of Information and Communications Kwangju Institute of Science and Technology) ;
  • Eom, Joo-Beom (Department of Information and Communications Kwangju Institute of Science and Technology) ;
  • Kim, Jin-Chae (Department of Information and Communications Kwangju Institute of Science and Technology) ;
  • Kim, Hok-Young (Department of Information and Communications Kwangju Institute of Science and Technology) ;
  • Paek, Un-Chul (Department of Information and Communications Kwangju Institute of Science and Technology)
  • Received : 2003.03.27
  • Published : 2003.06.01

Abstract

It is reported that the spectral loss of photonic crystal fiber (PCF) having a large hole-to-hole distance (~ 10 ${\mu}{\textrm}{m}$) is sensitive to micro- and macrobending when compared with the conventional single-mode fiber. In this paper, we will present the measurement result of the macro- and microbending characteristics of fabricated PCF with large hole-to-hole distance (> 10 ${\mu}{\textrm}{m}$) . For the macrobending experiment, the fiber was simply wound around a circular structure with variable diameter that could be reduced to a few centimeters. For the microbending case, regularly spaced silica rods were attached on a slide glass and pressed against the fiber by loading a stack of metal plates of known weight on the glass. The transmission loss spectrum shows a rather flat response to the to microbending, and this makes the PCF a good candidate for a wideband variable optical attenuator.

Keywords

References

  1. J. C. Knight, T. A. Birks, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, no. 13, pp. 961-963, 1997. https://doi.org/10.1364/OL.22.000961
  2. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using singlematerial fibers,” IEEE Photon. Technol. Lett., vol. 11, no. 6, pp. 674- 676, 1999. https://doi.org/10.1109/68.766781
  3. M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fiber,” Electron. Lett., vol. 35, no. 1, pp. 63-64, 1999. https://doi.org/10.1049/el:19990055
  4. W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, “Soliton effects in photonic crystal fibres at 850 nm,” Electron. Lett., vol. 36, no. 1, pp. 53-55, 2000. https://doi.org/10.1049/el:20000134
  5. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: Measurement and future opportunities,” Opt. Lett., vol. 24, no. 20, pp. 1395-1397, 1999; errata on 15 Nov.1999. https://doi.org/10.1364/OL.24.001395
  6. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett., vol. 23, no. 21, pp. 1662-1664, 1999. https://doi.org/10.1364/OL.23.001662
  7. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett., vol. 34, no. 14, pp. 1347-1348, 1998. https://doi.org/10.1049/el:19980965
  8. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, “Cladding-mode-resonances in air-silica microstructure optical fiber,” J. Lightwave Technol., vol. 18, no. 8, pp. 1084-1100, 2000. https://doi.org/10.1109/50.857754
  9. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett., vol. 25, no. 18, pp. 1325-1327, 2000. https://doi.org/10.1364/OL.25.001325
  10. E. Yablonovitch, “photonic band-gap structures,” J. Opt. Soc. Am. B, vol. 10, no. 2, pp. 283-295, 1993. https://doi.org/10.1364/JOSAB.10.000283
  11. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science, vol. 282, pp. 1476-1479, 1998. https://doi.org/10.1126/science.282.5393.1476
  12. J. B. Eom, K. W. Park, T. -J. Eom, Y. Chung, W. -T. Han, U. C. Paek, and B. H. Lee, “Transmission and numerical aperture measurement of photonic crystal fiber,” in OECC 2001, OSA, Sydney, Postdeadline, PDP 2.05, 2001.
  13. T. Sorensen, J. Broeng, A. Bjarklev, E. Kundsen, and E. E. Barkou Libori, “Macro-bending loss properties of photonic crystal fibre,” Electron. Lett., vol.37, no.5, pp. 287-288, 2001. https://doi.org/10.1049/el:20010227
  14. D. Marcuse, “Microdeformation losses of single-mode fibers,” Appl. Opt., vol. 23, no. 7, pp. 1082-1091, 1984. https://doi.org/10.1364/AO.23.001082
  15. H. F. Taylor, “Bending effects in optical fibers.” J. Lightwave Technol., vol. LT-2, no. 5, pp. 617-628, 1984. https://doi.org/10.1109/JLT.1984.1073659
  16. K. Petermann, and R. Kuhne, “Upper and lower limits for the microbending loss in arbitrary single-mode fibers,” J. Lightwave Technol., vol. LT-4, no. 1, pp. 2-7, 1986. https://doi.org/10.1109/JLT.1986.1074620