References
- Titanium Matrix Composites: Mechanical Behavior Mall,S.;Fecke,T.;Foringer,M.A.;,Mall,S.(ed.)Nicholas,T.(ed.)
- Materials Science & Engineering A v.A213 An overview on the use of titanium in the aerospace industry Boyer,R.R.
- Proc. Mat. Res. Soc. Symp. v.273 Process modeling for titanium aluminide matrix composites Bampton,C.C.;Graves,J.A.
- The Minerals,Metals & Materials Society Development in Ceramic and Metal-Matrix Composites Nicolaou,P.D.;Piehler,H.R.;Kuhni,M.A.;Kamleshwar,U.(ed.)
- Materials Science and Technology v.14 Model for consolidation of Ti-6A1-4V/SiC fibre composite from plasma sprayed monotape Gilmore,D.L.;Han,H.N.;Derby,B. https://doi.org/10.1179/026708398790613344
- Actametal. mater. v.41 no.8 Modeling the densification of metal matrix composite monotape Elzey,D.M.;Wadley, H. N. G.
- 대한기계학회논문집 A v.24 no.2 열간 등가압소결에 의한 Ti-6A1-4V 분말의 치밀화 거동 양훈철;김기태
- Metals and Materials v.4 no.3 Modified Arzt-Ashby-Easterling model for powder consolidation Yong,L.;Nesterenko,V.F.;Indrakanti,S.S.
- Acta Materialia v.48 Matrix flow and densification during the consolidation of matrix coated fibres Schuler,S.;Derby,B.;Ward-Close,C. https://doi.org/10.1016/S1359-6454(99)00428-0
- Acta Materialia v.45 no.5 The densification of metal coated fibers: hot isostatic pressing experiments Kunze,J.M.;Wadley,H.N.G. https://doi.org/10.1016/S1359-6454(96)00326-6
- Metal Matrix Composites Tchubarov.V.M.;Zabolotsky,A.A.;Krivov,G.A.;Fridlyander,J.N.(ed.)
- Materials Science and Technology v.14 Towards cost effective manufacturing of Ti/SiC fibre composites and components Guo,Z.X. https://doi.org/10.1179/026708398790613443
- Int. J. Mech. Sci. v.37 no.7 Process parameter selection for the consolidation of continuous fiber reinforced composites using finite element simulations Nicolaou,P.D.;Piehler,H.R.;Saigal,S. https://doi.org/10.1016/0020-7403(94)00092-X
- J. of Materials Processing Technology v.62 Prediction of the poer-closing kinetics during the consolidatin stage of SiC unidirectional long fibers: titanium alloy matrix composites Bordere,S.;Magny.C.;Marchal,K.;Ballet,M.;Levailant,C. https://doi.org/10.1016/0924-0136(95)02193-0
- Tran. of the ASME v.99 no.1 Continuum theory of ductile rupture by void nucleation and growth: part Ⅰyield criteria and flow rules for porous ductile media Gurson,A.L.
- Int.J.of Fracture v.17 no.4 Influence of voids on shear band instabilities under plane strain conditions Tvergaard,V. https://doi.org/10.1007/BF00036191
- J.of Mech. and Phys. of Solids v.35 no.5 The effect of porosity distribution on ductile failure Becker,R.
- Proc. Symp. on Superplastic Forming Superplatricity in titanium alloys Hamilton,C.H.
- Superplasticity in metals and ceramics Nieh,T.G.;Wadsworth,J.;Sheby,O.D.
- Acta Met. v.27 A model for creep based on the climb of dislocation at grain boundaries Spingam,A.R.;Nix,W.D. https://doi.org/10.1016/0001-6160(79)90093-2
- Proc Instn Mech Engrs v.211 Determination of superplastic consitutive equations and stain rate sensitivities for aerospace alloy Kim,T.W;Dunne,F.P.E.
- Mechanics of solid materials Lemaitre,L.;Chaboche,J-L.
- Superplasticity and Superplastic Forming, Proc.Int.Conf. Plastic stability and strain to fracture during superplastic deformation Baudelet,B.;Suery,M.;.Hamilton,C.H.(ed.);Paton,N.E.(ed.)