Micromechanical Model for the Consolidation Behavior in SiC-Ti Metal Matrix Composites

SiC-Ti금속기 복합재료의 강화거동에 관한 미시역학적 모델

  • 김준완 (한양대학교 기계설계학과 대학원) ;
  • 김태원 (한양대학교 기계설계공학부)
  • Published : 2003.06.01

Abstract

Densification occurs by the inelastic flow of the matrix materials during the consolidation processes at high temperature for MMCs, and the results depend on many process conditions such as applied pressure, temperature and volume fraction of fiber and matrix materials. This is particularly important in titanium matrix composites since material failure may occur by either the applied conditions or microstructural parameters through the processes, and thus a generic model based on micro-mechanical approaches enabling the evolution of density over time to be predicted has been developed. The mode developed is then implemented into FEM so that practical process simulation has been carried out. Further the experimental investigation of the consolidation behavior of SiC/Ti-6Al-4V composites using vacuum hot pressing has been performed, and the results obtained are compared with the model predictions.

금속복합재료 개발을 위한 고온가압 성형공정은 기지재료의 비탄성거동과 성형체 내부의 기공에 대한 충진 과정을 수반하며 이러한 강화공정은 압력, 온도 그리고 강화재와 모재의 상대부피분률과 같은 공정변수의 영향을 받게 된다. 특히 티타늄금속기 복합재료의 강화공정은 강화재와 모재 사이의 기계적 혹은 열적 특성 차이 및 생산환경으로 인한 다양한 형태의 손상이 발생할 수 있으며 따라서 이들을 극복하기 위한 재료특성, 작용압력, 온도, 시간조건 등과 공정에 따른 조직의 진전 등 미소역학적 연구가 수반된 최적의 고온가압강화공정의 개발이 요구되어진다. 이를 위하여 본 연구는 VHP방식을 이용한 SiC/Ti-6Al-4V 연속섬유강화 금속기 복합재료의 강화공정실험을 수행하였으며 특히 미시역학적 접근에 따른 다공성 재료의 구성방정식을 이용하여 보강재와 기지재료의 변형거동과 고온가압공정에 필요한 다양한 조건들을 실험결과와 비교 연구하였으며 유한요소해석을 통해 공정변수와 그에 따른 결과들을 고찰하였다.

Keywords

References

  1. Titanium Matrix Composites: Mechanical Behavior Mall,S.;Fecke,T.;Foringer,M.A.;,Mall,S.(ed.)Nicholas,T.(ed.)
  2. Materials Science & Engineering A v.A213 An overview on the use of titanium in the aerospace industry Boyer,R.R.
  3. Proc. Mat. Res. Soc. Symp. v.273 Process modeling for titanium aluminide matrix composites Bampton,C.C.;Graves,J.A.
  4. The Minerals,Metals & Materials Society Development in Ceramic and Metal-Matrix Composites Nicolaou,P.D.;Piehler,H.R.;Kuhni,M.A.;Kamleshwar,U.(ed.)
  5. Materials Science and Technology v.14 Model for consolidation of Ti-6A1-4V/SiC fibre composite from plasma sprayed monotape Gilmore,D.L.;Han,H.N.;Derby,B. https://doi.org/10.1179/026708398790613344
  6. Actametal. mater. v.41 no.8 Modeling the densification of metal matrix composite monotape Elzey,D.M.;Wadley, H. N. G.
  7. 대한기계학회논문집 A v.24 no.2 열간 등가압소결에 의한 Ti-6A1-4V 분말의 치밀화 거동 양훈철;김기태
  8. Metals and Materials v.4 no.3 Modified Arzt-Ashby-Easterling model for powder consolidation Yong,L.;Nesterenko,V.F.;Indrakanti,S.S.
  9. Acta Materialia v.48 Matrix flow and densification during the consolidation of matrix coated fibres Schuler,S.;Derby,B.;Ward-Close,C. https://doi.org/10.1016/S1359-6454(99)00428-0
  10. Acta Materialia v.45 no.5 The densification of metal coated fibers: hot isostatic pressing experiments Kunze,J.M.;Wadley,H.N.G. https://doi.org/10.1016/S1359-6454(96)00326-6
  11. Metal Matrix Composites Tchubarov.V.M.;Zabolotsky,A.A.;Krivov,G.A.;Fridlyander,J.N.(ed.)
  12. Materials Science and Technology v.14 Towards cost effective manufacturing of Ti/SiC fibre composites and components Guo,Z.X. https://doi.org/10.1179/026708398790613443
  13. Int. J. Mech. Sci. v.37 no.7 Process parameter selection for the consolidation of continuous fiber reinforced composites using finite element simulations Nicolaou,P.D.;Piehler,H.R.;Saigal,S. https://doi.org/10.1016/0020-7403(94)00092-X
  14. J. of Materials Processing Technology v.62 Prediction of the poer-closing kinetics during the consolidatin stage of SiC unidirectional long fibers: titanium alloy matrix composites Bordere,S.;Magny.C.;Marchal,K.;Ballet,M.;Levailant,C. https://doi.org/10.1016/0924-0136(95)02193-0
  15. Tran. of the ASME v.99 no.1 Continuum theory of ductile rupture by void nucleation and growth: part Ⅰyield criteria and flow rules for porous ductile media Gurson,A.L.
  16. Int.J.of Fracture v.17 no.4 Influence of voids on shear band instabilities under plane strain conditions Tvergaard,V. https://doi.org/10.1007/BF00036191
  17. J.of Mech. and Phys. of Solids v.35 no.5 The effect of porosity distribution on ductile failure Becker,R.
  18. Proc. Symp. on Superplastic Forming Superplatricity in titanium alloys Hamilton,C.H.
  19. Superplasticity in metals and ceramics Nieh,T.G.;Wadsworth,J.;Sheby,O.D.
  20. Acta Met. v.27 A model for creep based on the climb of dislocation at grain boundaries Spingam,A.R.;Nix,W.D. https://doi.org/10.1016/0001-6160(79)90093-2
  21. Proc Instn Mech Engrs v.211 Determination of superplastic consitutive equations and stain rate sensitivities for aerospace alloy Kim,T.W;Dunne,F.P.E.
  22. Mechanics of solid materials Lemaitre,L.;Chaboche,J-L.
  23. Superplasticity and Superplastic Forming, Proc.Int.Conf. Plastic stability and strain to fracture during superplastic deformation Baudelet,B.;Suery,M.;.Hamilton,C.H.(ed.);Paton,N.E.(ed.)