nternational Journal of Control, Automation, and Systems Vol. 1, No. 2, June 2003 229

A Framework for Cognitive Agents

Joshua D. Petitt and Thomas Briunl

Abstract: We designed a family of completely autonomous mobile robots with local intelli-
gence. Each robot has a number of on-board sensors, including vision, and does not rely on
global positioning systems The on-board embedded controller is sufficient to analyze several
low-tesolution color images per second. This enables our robots to perform several complex
tasks such as navigation, map generation, or providing intelligent group behavior. Not being
limited to playing the game of soccer and being completely autonomous, we are also looking at
a number of other interesting scenarios. The robots can communicate with each other, e.g. for
exchanging positions, information about objects or just the local states they are currently in (e.g.
sharing their current objectives with other robots in the group). We are particularly interested in
the differences between a behavior-based approach versus a traditional control algorithm at this

still very low level of action.

Keywords: Adaptive control robot group, autonomous agent, behavior-based systems.

1. INTRODUCTION

We have worked with small autonomous mobile
robots for a number of years [1]. Their actuator and
sensor hardware has evolved over'the years in along
with the operating system and the control software.
Although our robots can be applied to many different
applications, we have used them for playing robot
soccer without global sensors [2] in a number of
competitions over the years. Each competition
“campaign” was programmed by a number of stu-
dents and, in the past, followed traditional hierarchi-
cal software architecture.

In this paper, however, we present a different, be-
havior-based approach for autonomous robots, which
can be used to implement arbitrary robot application
scenarios.

2. ROBOT HARDWARE

Each of our robots comprises a micro-controlier
system (EyeBot) [3] interfaced to a digital color cam-
era, distance sensors, shaft encoders, compass, DC
motors, servos, wireless module, and a graphics dis-
play. All image processing is done on-board. We are
especially interested in research on autonomous
mobile systems, so we took this clearly disadvan-

Manuscript received Febuary 28, 2002; accepted June 24,
2002.

Thomas Briunl is with the Center for Intelligent Infor-
mation Processing Systems, University of Western Australia .
(email: braunl@ee.uwa.edu.au).

Joshua Petitt is with the School of Mechanical Enginee 1-
ing, University of Western Australia, 35 Stirling Highway,
CRAWLEY, WA 6009. (email: petitj01 @mech.uwa.edu.au).

taged robot soccer approach instead of the traditional
approach, involving the use of a glob al overhead camera.

We are using low-resolution images (160x120 in
24bit color) and have to restrict image processing
complexity due to limited processor computation rate
Frame grabbing can be done at 30 frames per second
(fps). However, depending on the detection algorithm
used, this is normally reduced quite significantly.
Self-localization is an important task for our robots,
since we do not use a global positioning system, such
as one based on the use of an overhead camera. In-
stead, we rely on dead reckoning from a specified
starting position and orientation. However, a robot
will soon lose track of its exact position and ori-
entation due to wheel slippage or - much worse - col-
lision with another robot. Therefore, we integrated a
digital compass into our robots.

In the robot soccer application, orientation is more
important than position, because it guarantees that a
robot is heading for the right goal. The robot’s local
infrared sensors can update its position, whenever it
gets close to one of the sidewalls or to a corner.

The camera mechanics were changed from a til ting to
panning operation in order to improve ball trac king. The
camera can be moved sideways at a higher speed than
the whole robot can turn, so this allows the tracking of
balls which are moving faster across the robot’s field of
view, than would otherwise be possible with a static
camera mount.

An innovative wireless protocol allows a group of
autonomous agents to communicate with each other.
Each agent can become the “master” and new 1 ncoming
agents or leaving agents are handled automat ically by
this virtual token ring approach [4].

230 International Journal of Control, Automation, and Systems Vol. 1, No. 2, June 2003

3. DISTRIBUTED BEHAVIOR MODEL

Brdunl at Univ. Stuttgart proposed a behav-
ior-based architecture for mobile agents in 1995 in
[5]. Lampert/Braunl successfully implemented this
system, by the name of “Rock&Roll”, in 1997 at
UWA. It allowed robot-independent programming
by selecting behaviors from a library list (Fig. 1).

Module libraries were written for different robots
(In this case: EyeBot, Soccerbot and the Pioneer I
robot), so all robot-specific implementation details
are hidden from the application “programmer”. Ac-
tually, no programming, in the real sense of the term,
takes place at this user level, since modules are sim-
ply selected from a list and linked onto a canvas.
Automatic code generation is then performed by the
Rock&Roll system, depending on the configuration
of the actual robot model.

The modules employed belong to the following
groups: sensor (yellow), compute (green), or actuator
(red) and are all executed in parallel. Drawing links
between the modules defines the actual data flow
between the modules. This implicitly determines not
only the data exchange, but also the synchronization
of the modules, since these modules can “sense” new
data coming in and use this information for their in-
ternal calculations.

What the Rock&Roll system does not have is a
clear distinction between behaviors and arbitration.
However, we intend to solve this problem with our
new general “behavior toolkit”, as shown in Fig. 2.
This new toolkit provides the basic framework re-
quired for implementing any behavior-based system,
whether it follows a centralized or a distributed con-
trol model. One application of this framework is the
“EyeMind” framework, proposed by Petitt, which is
discussed in more detail in the following sections.

Fig. 1. Rock&Roll, Lampert/ Briunl 1997.

User Master Coravol

'

(3) . Ceatral

Sersi
o P 5™ B2 ™ B

Sensors incl.
User Input » Bl B2 L Bn

(b) MAX

Fig. 2. Behavior Toolkit with

(a) centralized or (b) local control.

4. THE EYEMIND FRAMEWORK

The EyeMind framework is a set of objects, writ-
ten in C++, which can be extended to create complex
behavior networks. The objects, their functions and
their application to our robot soccer team “CIIPS
Glory” will now be described.

Many robots have been built around the
“sense-think-act” paradigm, with varying degrees of
success. This follows the path of classical artificial
intelligence, since a plan is created from a set of in-
puts or data stored in memory. Other researchers
have discarded this idea and have created robots with
what is essentially a “sense-act” paradigm. These
robots are termed “behavior-based” and have proven
to be successful in dynamic environments. Other hy-
brid approaches have also been implemented, again
with varying degrees of success. The commonalities
between the two conventions are that in both models,
the agent has intentionality [6] and the agent is em-
bodied [7]. Intentionality refers to the desire of the
agent to manipulate its surroundings, while embodi-
ment means that the agent only has limited knowl-
edge about its environment, and that it can act on, or
change, its surroundings. In the previous sentence,
the word “knowledge” is used rather loosely. There
are still many questions about the true nature of
knowledge and therefore it lacks a firm definition. In
this instance, let’s assume that knowledge is any in-
formation that the agent uses to control its actions.
This means that knowledge could of neuron weights
for the connectionists, and/or direct sensor readings

International Journal of Control, Automation, and Systems Vol. 1, No. 2, June 2003 231

(analog or digital in representation) for the behavior-
ists.

The drawback to these three approaches, classical,
connectionist, and behaviorist, is that the agent must
gither

e Know explicitly how to accomplish every
task it is given, as well as being able to care-
fully plan each task.

* Know nothing explicit about its tasks, and
just rely on learning the correct way to ac-
complish them from an expert or teacher.

¢ Know nothing; just react to the environ-
mental stimulus. Only tasks for which the
robots are “engineered” to perform can be
accomplished (i.e. wander and avoid obsta-
cles).

A zero-sum physical game, like soccer, provides a
perfect way of exposing the deficiencies of each ap-
proach. The classical approach is often too slow to
keep track of the progress of the game, and so a plan,
which is valuable at one moment in time, can easily
become less effective or useless later on. From this
point further, classical Al will be referred to as the
“reasoning” approach and the behavior-based ap-
proach will be termed the “reacting” approach. The
connectionist approach, which in many ways is a
reactive approach combined with complicated map-
pings of inputs to outputs, can be successful in nego-
tiating dynamic environments (i.e. if there is no plan,
then there is no plan to be changed), but cognition
and reasoning are completely left out. The problem is
that neither approach truly captures what most hu-
mans would consider intelligent behavior (the be-
haviorists might argue about this point, but I think
that many would agree that the mental abilities of
ants, fish, or even those of birds are too crude for
them to have the ability to succeed in a team game).
The remainder of the discussion will be devoted to
resolving the differences between the two approaches
and to show that both of these approaches are needed
for the success of an intelligent agent. We will also
present a model that incorporates both approaches.

The real underlying difference, in the reasoning
versus the reacting model, is that the reasoning ap-
proach is roughly modeled after the cognition that
takes place in our forebrain, or our conscious mental
activities. Conversely, the reacting approach is mod-
eled after the lower brain and brainstem or our un-
conscious mental activities, which primarily include
motor control. Freud [8], in an attempt to understand
human thinking, developed a model of the human
psyche, which encompasses both the unconscious
and conscious mental activates. He asserted that the
mind could conceptually be divided into three parts,
the id, ego and super-ego. The point must be made
that he did not consider each of these to be distinct

~ (X)) F—

Y 9

Fig. 3. Simple summing model of a neuron.

processes, rather that they communicate and affect
each other.

Other researchers [9] have used three layer archi-
tectures in robot designs. They have assigned names
to these layers, such as the skill, sequencing and
planning layers or the controller, sequencer and de-
liberator. The three-layered architecture described
here uses the descriptors “id”, “ego” and “super-ego”,
following the nomenclature of Freud’s model of the
mind.

4.1 The unconscious id

The Id class provides the functionality required for
instantiating and managing all the sensors and actua-
tors used by the agent. The Id stores lists of refer-
ences for active actuator and sensor objects, which
from this point on will be collectively referred to as
input/output (I/O) objects. The 1d also manages the
current behaviors of the robot. Before continuing,
further explanation will be given about behaviors,
sensors, and actuators and how they are stored. The
fundamental data structure used in our architecture is
a doubly linked List class composed of Node ele-
ments. Derived from the Node class is the LockNode
class. This provides the functionality to ‘lock’ a node,
so that it can only be accessed by the object that pos-
sesses the correct key. This enables multiple threads
of control to access shared resources.

Behaviors - A behavior can be defined as a map-
ping of sensor input to motor output. By combining
simple behaviors, a robot can be engineered to as-
sume a more complex appearing behavior, which
could be perceived by an observer as “intelligent”.
Robots that do simple tasks such as following light
beams, to ones that can perform more complex prob-
lems like solving mazes and navigating through dy-
hamic environments, can all be constructed, some-
times containing no processing unit at all [10]. What
they all have in common is a feedback loop between
their sensors and actuators and the ability for their
behaviors to be suppressed or excited. The Glory
architecture defines an abstract class called a Behav-
ior, from which all other behaviors are derived. A
generic behavior has an excitation input and an in-
ternal threshold value. The generic behavior also has
an output, which can be a single value or a vector of
values. When the behavior is excited, the excitation
value generated is added to the current excitation
value, which is itself the result of previous excitation

232 International Journal of Control, Automation, and Systems Vol. 1, No. 2, June 2003

events. If the new excitation value is greater than a
threshold value, then the behavior is activated and it
‘fires’. The firing of the behavior can take many
forms, from creating an output signal for an actuator,
requesting sensor input, to triggering another behavior.

The Behavior object is almost identical to the
model of a neuron used in many artificial neural
networks (ANN) (see Fig. 3 for a diagram). The es-
sential difference between these two types of objects
is the time delay between the arrival of the input sig-
nal and the generated output. For a typical ANN, the
input signal is propagated through the layers in a
synchronous fashion and the function almost imme-
diately produces output that reflects the state of the
inputs at that moment. With a Behavior there is a
time delay between the input to the Behavior and the
change in the output being sensed. In other words, a
behavior is a function of both the inputs and of time,
or a response of a dynamic system to a time varying
input. The similarity between a behavior and a neu-
ron allows for much of the functionality to be con-
tained in a common base class and facilitates infor-
mation flow from a neural network directly to a be-
havior or vice-versus. Therefore, many of the learn-
ing algorithms that have been developed for ANNs
can be applied to behavior networks.

This model may be arranged as a feed-back con-
troller or as a subsumption unit. Note that by allow-
ing representations for positive and negative infinity
(defined as the largest and smallest floating point
numbers allowed by the machine), then the behavior
may be suppressed or excited by only one input. An
ambiguity would exist if a behavior were to be both
excited and suppressed by an “infinite” signal, thus
we have chosen for the behavior to be suppressed.

The Id class retains a list of up to sixteen ‘root’
behaviors. Each of these behaviors are excited by the
timer processor unit (TPU) at set intervals. The TPU
interrupts the CPU and causes the CPU to execute
the list of root behaviors. The root behaviors then
either do nothing, or execute their specific Fire func-
tion and propagate the signal through the network.

One of the more powerful features of the
MC68332 is the availability of the timer processor
unit (TPU). The TPU has 16 available channels,
which execute independently of the CPU. The timers
can be set to interrupt the CPU at regular intervals
(1/100 sec.) and divert the CPU to execute a list of
functions. This means that the CPU time can be
shared between the ‘conscious’ processes normally
being executed and the ‘unconscious’ processes that
are constantly interrupting the main processes in or-
der to execute. Because the TPU interrupts the CPU
at regular intervals, the interrupting functions must
execute quickly otherwise they themselves will be
interrupted. Thus, these functions are reserved for

motor control, which requires regular intervals for
execution.

Sensor Input - Full autonomy was the primary goal
of this project. Each robot must be able to work in-
dependently from the rest of the group. Therefore,
each robot must be equipped with all the facilities
necessary to assure its independence. The most im-
portant sensor for each robot is the CCD camera. The
160x120 pixel, 16-bit image provides each robot with
rich information about its environment.

Each robot is also equipped with five distance sen-
sors. Many robot designers use large numbers of
distance sensors (sonar, infrared), mounted at differ-
ent points around the robot, in order to detect obsta-
cles. Sometimes the total number of distance sensors
can be as high as twelve or twenty-four. For the
CIPS Glory robots, we utilized the opposite ap-
proach. Instead of using a large number of fixed
sensors, our robots use only five position sensing
devices (PSDs). One is attached under the camera
and two are mounted on the front of the robot, facing
in the forward direction. The last two PSDs are
mounted on the front of the robot, facing outward.
This set-up is useful, because the robot can even
track objects on either side of it, like walls or other
robots.

The robots also have a compass module and en-
codets to measure the rotation of the each wheel.

Sensor data are stored in objects derived from the
Sensor class, which is itself derived from the
LockNode class. This allows for the sensors be ar-
ranged in a list structure.

Motor Output - The EyeMind architecture defines
an abstract output class, Actuator, from which the
DCMotor and Servo objects are derived. Like the
Sensor class, the Actuator class is also derived from
the LockNode class. The locking feature of the
LockNode is especially important for the output, in
order to be able to eliminate conflicting signals.

Communications - The Glory robots communicate
through a 38,400 baud wireless communication mod-
ule. The communication is set-up in a virtual token
ring network. The highly dynamic, multi-agent envi-
ronment, that robot soccer provides, lends itself to
fast communication between robots.

I/O Management - Any other software object that
wishes to access a specific I/O object, this is most
often an instantiated Behavior object, must first
check to see that this I/O object is registered with the
Id. If the I/O object is registered, the Id will provide
the object with a pointer to the I/O object. The object
that receives the 1/0 pointer can then lock the sensor
or actuator, so that no other behaviors can access it.
Note that locking of I/O objects is not required after
they are accessed. For the case of the PSD object, it
is perfectly acceptable for more than one behavior to
access this object and request its current value.

International Journal of Control, Automation, and Systems Vol. 1, No. 2, June 2003 233

However, for other I/0Q objects, specifically output
objects such as a DC motor, it is important that only
one behavior be able to have access at any one time.
In either case, if the I/O object is not registered with
the Id when the behavior requests a pointer to the 1/0
object, then the Id instantiates this object, initializes
it, places it on the list of registered I/O objects and
then returns a pointer to the 1/O object.

4.2 The conscious ego

The Ego class can be thought of as a conflict reso-
lution module. This is analogous to Freud’s ego in
the human psyche model. We, as intelligent beings,
make many immediate decisions which are soon for-
gotten and require little thought, but do pass briefly
through our conscious processes. An example of this
would be whether to turn or push a handle on a door.
In most cases, when encountered with the need to
pass through a closed door, one would attempt the
action (behavior) that is most apparent or has worked
in the past; let us assume this is to push the handle. If
the door does not open, the behavior did not produce
satisfying results, a new behavior is chosen, for
instance to push the handle. The problem of the
closed door probably passed briefly through our
mind before the desired result (to open the door) dic-
tated the action chosen (to push the handle). In the
case that the door did not open, the problem at hand
occupies more of our conscious thought as we deter-
mine an alternative action.

A fundamental abstract class in the Glory archi-
tecture is the State class. This class holds one piece
of information, the desire to be satisfied. In order to
derive a specific State, two functions must be defined.
These are the Is(State* state) function and the Satisfy
function. The Is(State* state) function returns an inte-
ger value corresponding to whether or not the state
given is the current object. Note that this involves the
use of an arbitrary measure, not actually comparing
the two objects to determine if they are quantitatively
the same, or refer to the same object. For example, a
basic derived state is the PositionState, which returns
true if the PositionState object is within a certain ra-
dius of the PositionState which was passed to the
function. The other function which must be defined,
the Satisfy function, is an important one, because it is

this that gives the EyeMind architecture its flexibility.

When the Satisfy function is called by the Ego, a set
of behaviors are evoked, in an attempt to satisfy the
State object. For example, the PositionState will
check to see if the Drive behavior is active. If it is,
then the PositionState will modify the desired posi-
tion of the Drive behavior so that when the Drive
behavior is executed, it will cause the robot to be
closer to satisfying its states.

There are pointers to three lists of states in the ego,
past states, desired states and current states. It should

be pointed out that this model does not have a single
all encompassing state. Therefore the current status
of the robot is determined by a list of sub-states, such
as position, battery power, possession of the ball, etc.
The basic algorithm for the ego is:

while (desired_states)
{
for each state
{
if Criticise(past_states,
current_states, desired_states)
{
LearnBad(superego);
RemoveState(state);
}
else if Satisfied(id)
{
LearnGood(superego);
RemoveState(state);
}
else state->Satisfy();
}
}

superego->CreateStrategy();

The actval algorithm is slightly more advanced
because it checks if any of the current states corre-
spond to the desired state. It also sorts the desired
states by their desire to be satisfied so that de-
sired_states with a higher desire value can be satis-
fied sooner. Notice that the fourth line of the algo-
rithm calls a function called Criticise(). For the agent
to be fully autonomous and intelligent appearing, it is
imperative that the agent has a mechanism that en-
ables it to determine when a desired state is not being
satisfied. This is the role of the Criticise function. In
the simplest case, the Criticise function will check
the timestamp of the desired state. This timestamp
represents the time by which the desired state should
be attained. If the current system time is smaller than
the desired state’s timestamp, then the Criticise func-
tion will return true and the desired state’s Satisfy
function will execute. If the current system time is
larger than the desired timestamp, then the Criticise
function will return false and a new strategy will be
created.

The final line of the Ego algorithm calls the Create
Strategy function of the SuperEgo object, which will
now be discussed.

4.3. The super ego

An important asset for an intelligent agent to have is
the ability to plan ahead. For the game of soccer to
be exciting, the robots must be able to coordinateof-
fensive and defensive plans, or plays.

234 International Journal of Control, Automation, and Systems Vol. 1, No. 2, June 2003

This feature can easily be incorporated into the
EyeMind framework. The SuperEgo class houses no
real information, but provides the interface with
higher-level algorithms, such as expert systems and
adaptive critics.

When the CreateStrategy() function is called, a list
of states which correspond to the strategy is ap-
pended to the list of desired states. This method of
control has an advantage over the optimal control
method, in that the path only needs to be roughly
defined in terms of a series of desired positions.
These positions can be modified easily and quickly,
thereby enabling the overall path of the robot to be
adapted in response to a changing situation. The
movement from one point to the next, however, is
accomplished with a reactive control method, allow-
ing the robot to quickly respond to external events,
like moving objects.

Because the SuperEgo, Ego, and Id run on differ-
ent threads of execution, each can be effectively per-
formed “at the same time”. Of course, each thread
shares processing time with each of the other proc-
esses. However, this does nevertheless allow the ro-
bot to plan while it is acting. This is a reflection of
our own, human, actions. How often have you been
doing a task, like walking to the bank, and thinking
about something completely different? During that
time you were probably planning some future event
or remembering past events and caring little about
the current task of walking and avoiding obstacles
along your path.

The ability to coordinate movements between ro-
bots provides the team with an obvious advantage, as
compared with an “every man for himself” style of
play. However, the strategy being followed at any
one time may have to be changed quite quickly, and
such a change needs to be quickly communicated
between all of the robots. However, the overall strat-
egy should not be allowed to dictate an individual
robot’s every movement. Individual robots should
retain a reasonable degree of autonomy. What the
strategy should determine is the overall movement of
the team, as well as the individual roles or positions
within the team, such as offensive or defensive, for-
ward, midfield or fullback.

The only unresolved issue to the system shown
here, for abstract agents, is the problem of assigning
objectives, or desired states. The game of soccer has
an obvious main objective, to win the game by scor-
ing more points than your opponent. Knowing this in
advance is advantageous to the programmer of the
system. However, if we consider the agent outside of
the context of the game of soccer, what objectives
should it have? An even more important question is
how does the agent acquire its objectives? One could
easily imagine asking the agent, “What do you want
to do today?” The ‘answer’ to this question can eas-

SuperEgo

Strategy Planner

position

y 4 —
Ego iﬁﬁ!ﬁ!ﬁﬂ
Engine 1

have ball

x
N
sz
Motor Actuators

velocity velocity
control control

Fig. 4. Diagram of eyemind architecture.

ily be pre-programmed or dynamically changed de-
pending on the master’s instructions. However, the
self-acquisition of goals is not such a straightforward
task and, in the authors’ opinion, an agent that is able
to do this could be considered to be cognitive. For
the CIIPS Glory, when the strategy function is called,
the robot chooses a particular play from a predefined
playbook. The playbook contains a set of four lists,
one list for each of the robot players.

Each list contains positions for a robot to navigate
and is tailored to specific offensive or defensive roles.
This approach works for the application of robot
soccer but is of little use for generic agents. One
suggested method of resolving the “what to do now”
dilemma is generating random lists of behaviors to
execute then storing lists which produce “good” re-
sults. However, because most robots and intelligent
agents are not designed with survival and reproduc-
tive instincts, the evaluation of what constitutes gen-
eral good behavior is unclear.

5. CONCLUSION

In this paper, we presented a behavior-based ap-
proach to controlling mobile robot agents. The
method presented in this study is called “EyeMind”,
a “programmed” behavior-based system based on
Freud’s model of the human mind. This framework is
an attempt to incorporate the useful qualities of each
of the three intelligent architectures. It captures the
fast, reactive control of behavior-based implementa-
tions while allowing high-level logic to dictate the
overall result of the robots actions. The behaviors can
be arranged in net structures and be seamlessly inte-
grated with artificial neural networks thus allowing

International Journal of Control, Automation, and Systems Vol. 1, No. 2, June 2003 235

for the system to learn. In future studies, we intend to
implement the “Behavior Toolkit”, which allows the
“generation” of behavior-based systems similar to the
existing “Rock&Roll” system.

REFERENCES

[1]T. Braunl, B. Graf, Small Robot Agents with
On-Board Vision and Local Intelligence, Ad-
vanced Robotics, vol. 14, no. 1, pp. 51-64 (14).
2000.

[2] T. Brdunl, P. Reinholdtsen, S. Humble, C/IPS
Glory - Small Soccer Robots with Local Image
Processing, P. Stone, T. Bulch, G. Kraetzsch-
mar (Eds.), Robocup 2000: Robot Soccer World
Cup 1V, Springer-Verlag Berlin Heidelberg,
LNAI 2019, pp. 523-526(4), 2001.

[3] T. Braunl, Embedded Robotics — Mobile Robot
Design and Applications with Embedded Sys-
tems, Springer-Verlag, Heidelberg, 2003.

[4] T. Briunl, P. Wilke, Flexible Wireless Communi-
cation Network for Mobile Robot Agents, Indus-
trial Robot International Journal, vol. 28, no. 3,
pp- 220-232 (13). 2001.

Thomas Braunl is Associate Pro-
fessor at the University of Western
Australia, Perth, where he founded
and directs the Mobile Robot Lab.
He received a Diploma in informatics
in 1986 from Univ. Kaiserslautern,
an MS in computer science in 1987
from the University of Southern
California, Los Angeles, and a Ph. D.
and Habilitation in Informatics in 1989 and 1994, respec-
tively, from Univ. Stuttgart. Professor Briunl’s research
interests are robotics, vision, graphics, and concurrency.
He is author of several research books and textbooks and
developed the EyeBot mobile robot family.

[5] P. Levi, M. Muscholl, T. Briunl, Cooperative
Mobile Robots Stuttgart: Architecture and Tasks
Proc. of the 4th International Conference on In-
telligent Autonomous Systems, [ASH4,
Karlsruhe, Mérz, pp. 310— 317 (8). 1995.

[6] D. C. Dennett. True Believers: The Intentional
Strategy and Why It Works. Mind Design 1. J.
Haugeland. Cambridge, The MIT Press: 57-79.
1981.

[7] R. A. Brooks, Intelligence without Representa-
tion. Mind Design II. J. Haugeland. Cambridge,
The MIT Press: 395-420. 1991.

[8] S. Freud, The Ego and the Id. London, Hogarth
Press. 1947.

[9] E. Gat, Three-Layer Architectures. Artificial In-
telligence and Mobile Robots. D. Kortenkamp,
R. P. Bonasso and R. Murphy. Cambridge, The
MIT Press: 195-210. 1998,

[10] R. Arkin, Behavior-Based Robotics, MIT-Press,
Cambridge MA, 1998.

Joshua Petitt received the B.S. in
mechanical engineering from the
University of Missouri-Rolla. His
interests are robotics, kinematics,
control theory and artificial intel-
ligence.

