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Mixed H,/Hy- Controller Realization with Entropy Integral

Sang-Hyuk Lee and Ju-Sik Kim

Abstract: An H,/ H_, -controller realization is carried out by considering an entropy integral.
Using J-spectral factorization, the parametrizations of all H, stabilizing controllers are de-
rived. By the relation of a mixed H,/H, control problem and a minimum entropy/ H,
control problem, the mixed H,/H, -controller state-space realization is presented.
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1. INTRODUCTION

The fundamental differences between H, control

design and H,, control theory can be discriminated

by the modeling and exogenous disturbances treat-
ment. Mustafa [1] showed the entropy of a system

which satisfies an H, norm bound, and derived
some important properties, including that entropy is an
upper bound on H, cost. Entropy has been estab-

lished as an important notation, with a wide applica-
bility in a number of diverse subjects, used in spectral
analysis.

Recently, mixed H,/H, optimal control prob-
lems have received a great deal of attention and sev-
eral authors have investigated these problems for con-
tinuous-time linear systems, by means of different
approaches. The problem of maximizing the entropy
of a stabilized closed-loop system has been solved by
Mustafa and Glover [2]. Their solution exploits the
parameterization of all closed-loop systems that sat-
isfy an H, norm bound. Bemstein and Haddad [3]
provided a solution to mixed H,/H, control prob-
lems by designing a LQG control subject to a con-
straint on H_ - disturbance attenuation. Motivated by

this work, Doyle ¢t al. [4] and Zhou et al. [5] derived
sufficient conditions for another kind of mixed

H,/H, problem to be solvable. It was shown later

by Yeh et al. [6] that the solution of Bernstein and
Haddad and the solution presented by Doyle et al. [4]
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are actually dual to each other.
We propose a parametrization of the class of all
controllers in terms of the Youla parametrization. The

H -controller design procedure is built upon the J-
spectral factorization approach to H,, control. How-

ever, Mustafa and Glover [7] proposed that the mini-
mum entropy controller is the central solution in the
parameterization of all stabilizing controllers satisfy-

ing ” H ||Oo <y . Therefore, the central solution satis-
fies the minimum entropy controller. Using the results
of Mustafa [1], we present a H, / H, -controller
state-space realization. In this paper, we introduce a
minimum entropy/ H,, control problem and a mixed
H,/ H,control problem. Also for a linear time in-
variant system, a mixed H,/H-controller realiza-

tion is derived. As is customary, let RH_ denote the

principal ring of proper stable rational functions of a
complex variable with real coefficients. Thus,

m(*RH ) is the set of matrices with elements in
RH,, .

2. STATEMENT OF THE PROBLEM

The control problem addressed in this paper con-
cerns the finite-dimensional linear time-invariant
feedback system depicted in Fig. 1.
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Fig. 1. Block diagram of the closed loop system.
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Consider an n-state plant P(s) with a state space

description
() = Ax(t) + B, w(t) + Bu(t), )
2(t) = C,x(t) + Dy u(t) )
¥(8) = Cx(t) + Dy wi), 3)

where x(¢) € R" is the state variable and w(¢) € R™
represents all external inputs, including disturbances
and sensor noise. z(f)e R" is the error output and

u(t)e R™ and y(tf)e R" are the control input and

the measured output, respectively.
In the following, we assume that

Al) (A, B) can be stabilized and (C, A) is detectable.
A2)D},Dyy =1, Dy DI =1, B,D3 =0, CI Dy, =0.

A-Al B A-AI B,
A3) and
C 2 Dy,

} are, respec-
z 1
tively, the full column and row rank for all A, and

A+A =0, where A is the complex conjugate of A.
Connecting an n-state feedback controller K(s)

with state-space description gives
X () = A.x () + B.y(1) . 4
u(t) = C.x (). (%)

The closed-loop transfer function from w to zis as

follows
| - -
H(s)= AR =FE(sI-A4)"'D, 6)

with the state-space description

X(1) = AX(t) + Dw(t), (N
2(t) = Ex(0), (®)
_ [A BCC} _ [ B, }
where A4 = , D= )
BCC Ac BCD21
E=[C, DjC.].

H(s) is a strictly proper real rational matrix which
has no poles on the imaginary axis such that

” H ||OO = Sup Ymax [H(]a))] <7,
weR
where o, () denotes the maximum singular value.
In general, there is a class of H(s) satisfying bound

v . For such a transfer matrix H(s), a formal defini-

tion of entropy integral is stated as follows.
Definition 1: The entropy integral at infinity of

the closed-loop transfer function H(s), for a toler-

ance y such that, H H ”w <y 1is defined by

(H, y)= —gz— [ ln‘ det [1 — 2 H (ja)H( ja)):] l do
)

where H *(-) is the complex conjugate transpose of
H().

This definition clearly shows that the entropy is
well-defined || H ||00 <y

0<I-y7H (jw) H(jo)<1 and
The closed loop entropy integral (9) is a useful meas-
ure of how close H is to the upper bound y on the

since implies

nonnegative.

maximum singular value of H(jw). The entropy
gives us a guaranteed upper bound on the actual quad-
ratic cost [3]. If H(s) is strictly proper, then
I(H, y)2|| H ||, is derived.

This entropy integral at infinity is the most interest-
ing and important case because of the strong connec-
tions with other control problems [9]. For our problem,
H(s) corresponds to no direct feed through terms

from exogenous inputs w(f) to controlled outputs
z(1) .

Next, we introduce definitions of the two problems
considered here.

The minimum entropy/ //,, control problem:
Find a feedback controller K(s) that stabilizes the
plant P(s) such that

1) The closed-loop transfer function H[K(s)]=H
satisfies the H, norm bound ||H ||Oo <y, where
¥y €R isgiven.

2) The closed-loop entropy integral I(H, y) is
minimized.

Definition 2: The auxiliary cost associated with
H(s), where " H ||00 <7 ,1is defined by

JH, )= Trace(QSETE)

where Q, >0 is the stabilizing solution of the alge-
braic Riccati equation

AQ, +0.47 +y?Q.ETEQ, + DD' =0.

The mixed H,/H, control problem: Find a
feedback controller K(s) that stabilizes the plant
P(s) such that

1) The closed-loop transfer function H[K(s)]=H
satisfies the H, norm bound ”H ”00 <y, where

y R isgiven.
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2) The auxiliary cost J(H, y) is minimized.
The mixed H,/H, -controller realization is ob-

tained as follows. By the results of Mustafa [1], the
mixed H,/H, control problem and the minimum

entropy/ H,, control problem are equivalent. We thus

present the controller state-space realization that
solves the aforementioned two problems.

3. MIXED H,/H,-CONTROLLER
REALIZATION

We seek to determine the controllers K(s) yield-
ing the closed loop transfer function H(s) such that

” H ”00 <y . Then the class of controllers satisfying

H_ norm bound is given by
K ={ () - 0W2))" My —OW,) : QS m(RH,,) |,
(10)

where Q e m(RH ). These results are obtained from

determining matrices ¥}, W,,and G| satisfying

- B, 0 P, B
Vl‘]rnz(}/)Vl:|: 2 Iil‘]nwnz(y)l: 2l H:|’

A 0 1
. ar| P 0
G =J VIJTli 12 },
Gl anr(y)Gl = I/Vl er(?’)pV] >
where
~ % ~ % IP 0 |
Vi =Vi(=5), W =W(-5), Jp(r)= ,
0 -

. 10 = B, AR
J= " | P:{ 11 12}:
I, 0 By Py

n, w, v\, Wl eRH,,

and 5 is the complex conjugate of seC.
We define, V)= Wfl ; that is

W, W Vi Vi
W1V1={ 1 12}{11 12}:1'
Wor Wy | |V Vo

The minimum entropy solution of (9) is obtained by
setting the arbitrary stable contraction O in (10) to

zero, i.e. by choosing the central solution out of the
set of all admissible controllers. In the following
proposition, minimum entropy controller realization is
derived in terms of the state-space. This result is ob-

tained from the relation of the minimum entropy/ H,,

control problem and the mixed H,/H, control

problem.
Proposition: The controller solving the minimum

entropy/ H,, control problem takes the following
state-space realization

K =L(sI = A+ M, C+M,C, + BL, — M,Dy, L)' M,

3 {A—M]C—M:ZCZ - BL +M,Dppl | Ml}

2 | 0
A, | B,
e |o
where
M, =YCT +B, DY, My=—yvCl,
{LI}_ phc, +BTx
L] | ~«C+yDyBlX)

and X and Y are, respectively, Riccati solutions of
Hy and Hy such that

}(1—7’_210()_l ;

u A-BDhC, y 2B, B — BB |
YTlcre +cIp,phe, AT r
Tz vz z P12H12z T +CZDIZB B
y2clc, -c'c]
~A+B,DhC |

5

e AT -C"' Dy BY
"\ BB +B.DI.D, BT
“Pw w+ wt214219w

Proof: The minimum entropy controller is the
central solution in the parameterization of all stabiliz-

ing controllers and satisfies HH (s)”Oo <y [7]. By the

results of Seo et a/.[8], the matrix W is given by

A-M,C-M,C B-M,D,, M,
W, = L I 0
L 0 I

Hence the central solution of all stabilizing control-
lers takes the form K(s)le_l1 Wi,. It is also ac-

cepted that the minimum entropy controller satisfy the
mixed H,/H, - controller [1,7], therefore we can

propose the state-space realization as above. [

4. CONCLUSION

We illustrated a minimum entropy/ H, -controller
and mixed H,/H, -controller design problem. Both
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of the controllers guarantee closed-loop stability, H

norm bound and H, performance. Using the equiva-
lence of the mixed H,/H, control problem and the

minimum entropy/ H, control problem, the control-
ler state-space realization was derived.
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