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Input Constrained Receding Horizon H. Control:
Quadratic Programming Approach

Young Il Lee

Abstract: This work is a modified version of an earlier work that was based on ellipsoidal type fea-
sible sets. Unlike the earlier work, polyhedral types of invariant and feasible sets are adopted to deal
with input constraints. The use of polyhedral sets enables the formulation of on-line algorithm in
terms of QP (Quadratic Programming), which can be solved more efficiently than semi-definite algo-
rithms. A simple numerical example shows that the proposed method yields larger stabilizable sets
with greater bounds on disturbances than is the case in the earlier approach.
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1. INTRODUCTION

A constrained receding horizon H, predictive

control (RHHC) is derived in the form of Quadratic-
Programming (QP), that not only guarantees stability
but also provides an induced [/, norm bound from

disturbance to state. This norm bounding property
will be referred to as the “disturbance boundedness
property” and the induced /, norm as “disturbance

H_ norm.” Such use will be made of a min-max

oo

formulation, which is known to be an effective way of
synthesizing robust controllers using H,_ concepts

[1, 4-6]. Input constraint was taken into account in [1]
based on ellipsoidal invariant sets and the problem is
solved via semi-definite programming. The concern
here is to modify this approach using polyhedral in-
variant sets, so that it is formulated in the form of QP
which can be solved more efficiently than the semi-
definite programming.

A closed-loop prediction strategy [1-3] will be de-
ployed to reduce the effect of disturbances in state
predictions. First the worst case disturbances are
computed as a function of current state and future
control inputs and then they are substituted in the
min-max formulation, to yield a quadratic cost that
can be minimized using QP. It is shown that for con-
trollable plants, there exist terminal weights which
achieve closed-loop stability while keeping the effect
of disturbances within prescribed bounds. In the case
of input saturation, stability of the system is deter-
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mined by the existence of feasible inputs, which steer
the initial state into a feasible and invariant set in a
finite number of time steps.

2. RECEDING HORIZON H_ PREDICTIVE
CONTROL

Consider a linear time invariant system described
by
xk+1:Axk +Buk +Da)k (1)

and a constant state feedback gain F', where
x€R", w,eR”, w,eR,
Ty 1<y, @)
u, and y, are the system input and output at time

k, and @, is a disturbance on the system. In the

sequel, modulus of a vector/matrix and inequalities
between vectors are defined as

my o myy t My
My My, 0 M
| M I= : £l £l .117
Mgy Mgo =0 Mg p |
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<
%p By o, < B,

Our aim here is to establish a strategy for computing
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perturbations, ¢ , on the state feedback control Fux;
ie.

Uy =ka +Ck, (3)

so that the H, -norm of the transfer function 7,

from @ to x, is bounded by a prescribed value

72 . System (1) with control (3) can be rewritten as
u=4A.xq+Bea +Dw,, 4. =A+BF (4)
with constraints
| Fxp + ¢ | <ty - 5)

At the present time x; , the future states
xk+j,j =1,2,---,N can be predicted as follows:

fk:Zxk+§Ek+5(T)k, (6)
where
o= X e X ko eenpel's
A=[4, £ - 47,
o=l o Ceaen-tel’s
o =[O0y Ok @'yl
( B 0 o 0
_ ACB B o 0
B = : . s ]
N-1 N-2
A8 4¥?8 . B
[ D 0 0
_ AcD D e 0
D = : . . Py
N-1 N-2
_Ac D Ac D -« D

and x;u is the predicted value of x,,; based on

data available at time % . Using the vector representa-
tion (6), a finite horizon cost index with positive defi-
nite weights O,Rand ¥ ecan be written in the fol-
lowing one-shot form [1]:

Jk(E/Ua_)k):”Zxk +§Ek +55k”é ( )

7
— 211=
+leelz =7l
where
lxllg = x'Ox,
Q= diag(Q,-,0,'¥), R :=diag(R,--,R),

and diag(Q,---,0Q) is a block diagonal matrix with
Q,---,0 as diagonal block matrices.

We define the discrete game as the following prob-
lem:

min  max J, (¢, @) ®)

@y
The maximizing disturbance a_); (cy) is obtained by

—aJk =0 as

aa)k
@, (&) =(y"1-D'QDy"'D'Q(Ax, + Bg), (9)
&%,

=2
a)k

=2(D'OD-3*1)<0, (10)

where M <0 denotes that M is negative definite.
The cost of (7), with @, (G ) =4 (G) Dy )’

- a),: w1k (¢ )] of (9), can be written as
Je(@e@ @) =l Ax, + B g +1% g, (1)

where Qoff =0+ QEQ_IE'Q),Q = )/2 -D'OD,
and (8).is converted to

_+_arg{minJ, @, (@)}
k — s

(12)

Cr
%
Wim < FXp i (@0 ) + Crpipe S Ui »

for i=0,1,---,N—1, where xk+,~|k(a_);) is the state

at k+i when disturbances a');: (¢, ) are applied to
the system for a given x; and perturbations
Crrj»J =0,L-+-,i—1. Note that the cost index (11) is

quadratic in terms of ¢, and the minimization prob-
lem of (12) can be solved via well-known QP meth-
ods.

Remark 1: The use of F in (3) makes the values
of predicted control inputs depend on the predicted
states, which means that the predictions are made in
closed-loop sense. The relations (6) and (10) show
that the predictions of states and the lower bound on
7 depend on the choice of F . Thus, the choice op-

timal F in the sense of disturbance H_, norm

would be an interesting problem although not pursued
in this work. [l
The Receding Horizon H,, Predictive Control

(RHHC) strategy is to compute the optimal E: by
solving the QP problem of (12) and apply only the
first element of E; at time k, at the time k+1,

E;H will be obtained for the receded future horizon
and the same procedure will be repeated thereafter. In
order to guarantee the closed-loop stability of RHHC,
it is required to have additional constraints on the
problem (12) that the terminal predicted state belongs
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to a feasible and invariant target set [1]. Unlike the
earlier work [1], here we adopt a polyhedral type fea-

sible and invariant set as described in the next section.

3. STABILITY AND H, NORM BOUND
WITH INPUT SATURATION

Here we will follow the approach used in [2]:
First define a polyhedral set of states, SRVFV , which is

robustly invariant with respect to state feedback law
u=Fx in the presence of bounded disturbances.

Then, for a measured state x;, compute perturba-

tions ck+j|k,j=0,1,---,N—1 which  minimizes
Jy (@@ ()  while

(=01,

guaranteeing that

FXpite (@) + Craii N-—1) are feasible

and X v (@) EER? despite disturbances.
Note that, because of the invariance property of
ER;TV with respect to the feedback gain F, EI: satis-

fying the above mentioned feasibility and member-
ship conditions guarantees the feasibility of

ék + =lepey ey 01 for state  x,; provided
that @y is bounded properly.
We assume that the disturbance is bounded as:

|a)klswlim (13)

In order to define a feasible and invariant set, we con-
sider a state transformation matrix W, which is a
design parameter to make the sets non-empty. Using
the state transformation z = Wx , the closed-loop state
equation (5) can be transformed into:

21 = A7 7 + WB ¢ + WD oy, (14)

where AZV =WACW_1. Based on the relation (14),

feasible and invariant set, ERI}V , can be defined as per
the following lemma.

Lemma 1: Consider the system (1) with trans-
formed state z=Wx and a stabilizing state feedback
gain F . A set of states defined as:

RY (o) = {x||z < @}, (15)

where a is a nx1 vector with positive elements,
is feasible and invariant with respect to F despite

xeR¥ (a)
and o satisfying (13), u = Fx satisfies the input con-

straint (2) and makes the state remain in the set if and
only if:

the bounded disturbance ie. for any

| 47 |a+|WD | oy S @ (16)

|FW ™ a<uyg, (17)
are met.
Proof: Assume that x; e‘.prV (o) from (16) and
(17),use of u;, = Fx, yields:

lzkar | = 147 2+ WD oy |

< W 2|+ |WDay | as)
< 4" |a+ | WD | @y
< a,

and from (17) we have:
| Fx |=| FW 2 |<| FW 7 @ S oy . (19)

Relation (18) implies x;,, 69“1”1/:’/(0() and (19)
guarantees that u = Fxsatisfies the input constraint

(2) for any x in the set. This proves the sufficiency
part of the theorem. The observation that we can

choose u=Fxand @, among the states of ‘.R;V (@)

and bounded disturbances, respectively, so that the
relations (18-19) hold with equality (elementwise) for

any given ACW,F , Wand D proves that conditions

(16-17) are necessary for the invariance and feasibil-
ity of the set. ]
Predictions of future states can be made as follows
based on (14):

i
Wi .
Zprip = (A Y 2 + 2 (A WBey, 1 (20)
j=I
i . .
+2 (4 WDay, .
j=1
It is possible to compute elementwise maxi-
mum/minimum values of z; ., based on (13) and
(20). The following lemma summarizes conditions
RE (@)

under which x; is steered into

Le. Xpinik e‘R? () using feasible perturbations
ChpkCh+lk " Ch+N-1k -

Lemma 2: Consider system (1) with transformed
state z=Wxand set SR;—V(a) defined as (15) with

respect to a state feedback gain F. A state x;, is
guaranteed to be steered into set SRVFV (¢)in N con-

trol steps, ie.  Xp np eSRB:V(a) despite bounded
disturbances (13) if:

W+ _max W—_min
|F7" 2l = F7 7 Ziegioqe + Crricie | S @i (21)

W+ _min W—_max
VF"  zihime = F7 Zieite + Choriciie | S @i (22)
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lzieni |Sa, lzevwg IS @, (23)

are met, where

i
Wi W iej
Zivi = (Ag ) 2+ D (A Y T WBepy e

A (24)
i .

+ 24 TWD | oy
j=1

zii =AY 2+ (A I WBy s

A (25)
AN,

- 214 YWD | oy,

=

for i=1,2,---,N with z,?ll,?x :z}(’l‘,in =z, and

FV" =Fw™, M* = max(M,0), and

M~ =max(-M,0). (the choice of maximum value is
done elementwise)
Proof: The proof is based on the fact that the

min/max value of Mz for z,;,, <z<z, can be

represented as:

max Mz

+ u—
<5< =M Zmax — M Zmin (26)
Zmin =25 Zmax
min Mz 4 _
< < =Mz =Mz (27)
Zmin =25 Zmax

Applying the above facts to (20), we obtain

max _min

Zik S Zik in (24), (25), which are maximum and

minimum possible values of z , respectively, sub-

ject to disturbances satisfying (13). For the given

bounds zﬁax,zﬁm on zy boundson z; alsocan

be obtained in the same way to yicld the feasibility
condition (21-22). It is easy to see that (23) ensures

max _min

Xp 4+ Nik eRY (), since Z™ .z are maximum

and minimum possible values of the transformed ter-
minal state. [l
Note that relations (16-17) and (21-23) are linear ine-
qualities with respect to a,c,lk,zf]:ax and z,‘l’,?in . Now,
we are ready to summarize the constrained receding
horizon algorithm as follows:

Algorithm RHHC

Step 1: At time instant & and for the measured

state x; solve the QP problem of minimizing cost
index (11) subject to constraints (16-17) and (21-23)
with variables to a,cy,z;;™ and zp™" .

Step 2: Apply u; = Fx; +cy to the system.

Step 3: At the next time k& +1, repeat Step 1 and 2.

Allowing o searched on-line enables us to use the

union of EprV(a) as our target set ie Stepl of
Algorithm RHHC ensures

Xesni €RE = g RY (), (28)

a

where S, denotes the set of o satisfying (16-17).

The stability of Algorithm RHHC can be summarized
as per the following theorem.

Theorem 1: Algorithm RHHC is guaranteed to be
feasible and keeps the state bounded while the trun-

cated induced H_ norm is bounded as y :

3 x|
=1t Yk+i 11Q S}/2

= (29)
>l
provided that
1) w;,; isbounded as (13) forall i>0.\
2) F,y,p and ¥ satisfy
y*1-D'0D >0 (30)
¥+ (p-1) N4, "W4, +Q (31)
72 - pD"¥D >0 (32)

3) an initial feasible solution are obtained in Step 1,
where ¥ is a terminal weight used in @

Proof: If feasible perturbation ¢; are obtained at
time & then the existence of feasible perturbations
Cyy at time k+1 is guaranteed, since perturba-
tions 31( + =lageye ey 01 will provide one

feasible set of perturbations at time % +1. This ar-
gument can be applied recursively to yield the
guaranteed feasibility of the algorithm. Using the
procedure used in [1], we have:

T (G @ () (33)

L
2> (15 llo + 1l cvicysios lr)
i1

2L—l
-V Z "wk+i
i=0

Provided that (31) is satisfied. Since we are interested
in the induced /, norm from disturbance to state, we

&

take x;, to be zero to remove the effect of initial
state on x;,; (i21). By (11), J, (¢, @ (c;))=0
for zero x; . Thus, we obtain condition (29).

Now for the boundedness of the state consider a set

of states i){fpV(N) such that for any state
xeiR;-V(N), there exist a bounded input sequence

[co(x)e;(x) ey (x)} which steers x into R . It
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is easy to see that the set ER?«/ (N) is bounded be-
cause any state of it can be steered into a bounded set
of states ‘R,’ff in a finite number of steps using

bounded inputs. Due to the guaranteed feasibility of
Algorithm RHHC, it is obvious that the actual state of

the system must lie in 9#/ (N) and therefore will be
bounded.

In the case when the disturbance is an [, signal,
we can establish additional asymptotic stability result.

Corollary 1: If the disturbance @, is bounded as
(13) for every k>0 and defines a sequence in /,,
then the closed loop system is asymptotically stable
with guaranteed disturbance H,, norm bound ie.

> x|
=1 k+i 110 S}/2
o

Yol |

under the conditions of Theorem 3.
Proof: The procedure of [1] and the guarantee of
feasibility, gives:

Z(H Xe+i o+ Chvicapria lr) (35)

i=l

o
2 %  __ %k %k
<P N Ny - I3 (@ @ G )
i=0
< 00,

(34)

This suggests that x,,; goes to zero asymptotically
for 0> 0, since its sum is bounded from above.
Similarly ¢;,; goes to zero asymptotically for
R>0 and this proves asymptotic stability. For
X =0, Jy(%,@(c))=0 and this in turn implies
the disturbance H_,, norm bound (34). [

The result above takes into account the input limits and
therefore requires that x;. v € R (@) 5 | @i 1S O
for i >0 as well as that the matrices F,¥ should satisfy
the relations (30-32) for some |y < @y, . The value of
L can be regarded as a design factor. As it approaches 1,

condition (31) is satisfied by only those stabilizing controllers
F that result in closed loop poles that are close to the origin.
Such controllers however, would result in dead-beat like
predicted trajectories for which, in the presence of input satu-
ration, the feasibility region would be rather limited. Con-
versely, for arbitrary large p , condition (31) can be satisfied
for almost the entire class of stabilizing F', thereby yielding
an enlarged feasibility region. By (32) however, large p
imply large 7 and this suggests that there exists a trade off
between feasibility, which requires large p and distur-
bance rejection making small y desirable.

4. NUMERICAL EXAMPLE

Consider the trivial scalar dynamics [1, 4]:
X +l=x, +u, +op. (36)

For F=-08 , the valuess N=3 , W¥=1.15
O =R =1 satisfy the stability conditions (30-32), with

K=0,p=1.6348 and »% =19, which is less than the

norm bound obtained in [4]. When u;;;, =1, we obtain a

feasible and invariant set ‘.R?:/ ={x|-1.25<x<1.25}
with allowable bound on disturbance ey, =1 which is

larger than the «case of [1] given as
{x|-1.118<x <1.118} and wy;,, = 0.44, respectively.

5. CONCLUSIONS

The RHHC method was modified by replacing the
ellipsoidal type invariant sets with polyhedral type
invariant sets. Use of polyhedral invariant sets en-
ables the formulation of RHHC in terms of Quadratic
Programming which can be solved more efficiently
than the semi-definite programming adopted in the
earlier work. Furthermore, it was shown that the re-
sulting feasible invariant set is larger than that of
ellipsoidal approach with larger disturbance bound for
an example .
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