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Abstract

Phenolic compounds in food and plant materials belong to the simple phenols, phenolic acids, coumarins,
flavonoids, stilbenes, tannins, lignans and lignins, all of which are considered as secondary plant metabolites.
These compounds may be synthesized by plants during normal development or in response to stress conditions.
Phenolics are not distributed uniformly in plants. Insoluble phenolics are components of cell walls while soluble
ones are present in vacuoles. A cursory account of phenolics of cereals, beans, pulses, fruits, vegetables and
oilseeds is provided in this overview. The information on the bioavailability and absorption of plant phenolics
remains fragmentary and diverse. Pharmacological potentials of food phenolics are extensively evaluated.
However, there are many challenges that must be overcome in order to fully understand both the function

of phenolics in plant as well as their health effects.
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INTRODUCTION

Phenolics are considered as secondary metabolites that
may be synthesized by plant both during normal devel-
opment (1) and in response to stress conditions such as
infection, wound and UV radiation, among others (2). These
compounds occur ubiquitously in plants (1,3) and are a
very diversified group of phytochemicals derived from
phenylalanine and tyrosine (3). Plant phenolics include
simple phenolics, phenolic acids, coumarins, flavonoids,

stilbenes, hydrolyzable and condensed tannins, lignans, -

and lignins (Table 1). In plants, phenolics may act as
phytoalexins, antifeedants, attractants for pollinators, con-
tributors to the plant pigmentation, antioxidants, and pro-
tective agents against UV light, among others (3). In food,
phenolics may contribute to the bitterness, astringency,
color, flavor, odor, and oxidative stability of food. In ad-
dition, health-protecting capacity of some and antinut-
ritional properties of other plant phenolics are of great
importance to both consumers and producers (3).
Phenolics are not uniformly distributed in plants at the
tissue, cellular and subcellular levels. Insoluble phenolics
are the components of cell walls, while soluble phenolics
are compartmentalized within the plant cell vacuoles (4).
At the tissue level, the outer layers of plants contain higher
levels of phenolics than those located in the inner part
of the plants (5). Cell wall phenolics, such as lignins (the
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polymer of monolignol units) and hydroxycinnamic acids
are linked to various cell components (6). These com-
pounds contribute to the mechanical strength of cell walls,
play a regulatory role in plant growth and morphogenesis
and in the cell response to stress and pathogens (6,7).
Ferulic and p-coumaric acids, the major phenolic acids,
may be esterified to pectins and arabinoxylans or cross-
linked to cell wall polysaccharides in the form of dimers
such as dehydroferulates and truxillic acid (Fig. 1) (8).
It has been suggested that these cross-links may play a
significant role in cell-cell adhesion (9), serve as a site
for formation of lignin (10) and contribute to the thermal

* stability of plant food texture (11). This paper provides

an overview of the occurrence of phenolics in selected
cereal grains, beans and pulses, oilseeds and fruits and
vegetables.

PHENOLIC COMPOUNDS IN CEREALS
AND LEGUMES

Phenolic acids and flavonoids are present in cereals in
the free and conjugated forms. The largest concentrations
of phenolic acids and flavonoids are located in the aleurone
layer in cereal grains. These compounds are also found
in embryos and seed coat of grains (12). Phenolic acids
are found abundantly in cell walls linked to hemicelluloses
in different forms such as 2-O-(5'-O-(E)-feruoyl-p-D-
xylopyranosyl)-(1—4)-D-xylopyranose (13). Phenolic acids
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Table 1. Some dietary sources of plant phenolics

Phenolic compounds Dietary source

Phenolic acids
Hydroxycinnamic acids
spinach, tomatoes
Hydroxybenzoic acids

appricots, blueberries, carrots, cereals, pears, cherries, citrus fruits, oilseeds, peaches, plums,

blueberries, cereals, cranberries, oilseeds,

Flavonoids

Anthocyanins bilberries, black and red currants, blueberries, cherries, chokecherries, grapes, strawberries

Chalcones apples

Flavanols apples, blueberries, grapes

Flavanonols grapes

Flavanones citrus fruits

Flavonols apples, beans, blueberries, buckwheat, cranberries, endive, leeks, lettuce, onions, olive, pepper,
tomatoes

Flavones citrus fruits, celery, parsley, spinach

Isoflavones soybeans

Condensed apples, grapes, peaches, plums
Hydrolyzable pomegranate, raspberries
Other phenolics
Avenanthramides oats
Capsaisinoids pepper
Coumarins carrots, celery, citrus fruits, parsley, parsnips
Lignans buckwheat, flaxseed, sesame seed, rye, wheat
Secoiridoids olives
Stilbenes grapes

5, 5'-DiFA

8, 5'-DiFA - benzofuran form

HO,C Q

“Zco,H

8, 5'-DiFA - open form

Truxillic Acid

Fig. 1. Chemical structures of ferulic acid dehydrodimers and
truxillic acid.

also contribute to the antioxidative potential of cereal
grains (14) and are used for the prediction of end-use of
cereal products (15). Cereal grains with elevated levels of
phenolic acids in caryopsis exhibit greater resistance to
both disease and insect herbivory (16), but have reduced
extractability of endosperm (15,16). Moreover, cross-link-
ing of arabinoxylans with phenolic acids lowers the ar-
abinoxylan solubility and swelling in water and reduces
their microbial degradation in the human colon (17).

Beans and pulses

Several flavonol derivatives have been identified as
pigments in the skin of bean seeds. Kaempferol 3-O-B-
D-glucopyranoside (astragalin) (Fig. 2) and kaempferol
3-0-B-D-glucopyranoside-(2—1)-O-B-D-xylopyranoside
are responsible for the yellow color of the seed coat of
‘Prim’ variety of Manteca-type dry beans (18). Meanwhile
astragalin, quercetin 3-O-B-D-glucopyranoside-(2—1)-O-§-
D-xylopyranoside, and quercetin 3-O--D-glucopyranoside
impart a red color to the seed coat of commercial dark
red beans (Montcalm cv.) (19).

A number of anthocyanins were also detected in the
bean seed coats. The seed coat of black-violet beans con-
tained malvidin 3-glucoside, petunidin 3-glucoside, delp-
hinidin 3-glucoside and 3,5-diglucoside (20), while delp-
hinidin 3-glucoside, cyanidin 3-diglucoside and 3,5-di-
glucoside, and pelargonidin 3-glucoside and 3,5-diglu-
coside were found in beans of Canadian Wonder cul-
tivar (21). In addition, delphinidin 3-O-glucoside, malvidin
3-O-glucoside, and petunidin 3-O-glucoside were iden-
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Compound R, R, R; R, R
Kaempferol OH H H H OH
Rutin OH OH H H O-rutinoside
Quercetin OH OH H H OH
Quercitrin OH OH H H O-rhamnoside
Isoguercitrin OH OH H H O-glucoside

. Hyperin OH OH H H O-galactoside
Astragalin OH H H H O-glucoside
Reynoutrin OH OH H H O-xyloside
Avicularin OH OH H H O-arabinoside
Myricetin OH OH H OH OH
Isorhamnetin H OCH; OH H OH

Fig. 2. Chemical structures of some flavonol derivatives.

tified as the main anthocyanins responsible for the color
of black and purple seed coat beans (22).

Condensed tannins are located mainly in the seed coat.
The content of tannins in peas is up to 2.0% as (+)-catechin
or tannic acid equivalents while the average content of
tannins in faba bean was 4.3% (54). On the other hand,
the level of tannins in cowpeas ranged from O to 0.7%,
while in chickpeas it was between 0 and 0.2% (24).

Cereals

Barley : Barley phenolics include tyrosine, tyramine and
its derivatives, phenolic acids and their esters and gly-
cosides, anthocyanins, proanthocyanidins, lignans and sub-

stances related to lignin (3). Several free phenolic acids
have been found in barley grain, namely salicylic, p-hy-
droxybenzoic, vanillic, protocatechuic, o-, m- and p-cou-
maric, syringic, ferulic, chlorogenic, and sinapic acids (Fig.
3) (25). The bound-phenolic acids found in barley grains
include ferulic, p-coumaric, vanillic, sinapic and p-hydro-
xybenzoic acids (26), as well as protocatechuic and
chlorogenic acids (Fig. 3) (25). Phenolic acids are located
acids in barley grains, respectively (27). Ferulic acid is
mainly in the outer layers (husk, pericarp, and aleurone)
of the grain (27). These layers contain 77.7 ~82.3 and 79.2
~86.8% of the total amounts of ferulic and p-coumaric
the predominant free phenolic acid in barley seeds and
barley brans (28). The concentration of ferulic acid in 29
barley cultivars of Canadian, European and US origin
ranged from 359 to 624 mg/kg of dry weight, while the
level of p-coumaric acid was between 79 and 260 mg/kg
dry weight (27). On the other hand, barley bran contained
6401 mg of ferulic acid (free and bound)/kg and 151 mg
p-coumaric acid/kg (29). The proanthocyanidins of barley
are implicated in the formation of haze in beer (30). These
compounds are located in the testa of the grain and are mix-
tures of oligomeric prodelphinidins and procyanidins (31).

Buckwheat : The content of phenolic acids in buck-
wheat is low. Bran-aleurone fraction of buckwheat con-
tains bound syringic, p-hydroxybenzoic, vanillic, and p-cou-
maric acids (Fig. 3) (32). The seeds and hulls of the Ca-
nadian buckwheat varieties contained, on the average, 387
and 1314 mg/100 g of flavonoids, respectively (33), while

X X
H
HO COOH HO C=C-COOH
Y Y
Benzoic Acid Derivatives X Y Cinnamic Acid Derivatives X Y
p-Hydroxybenzoic Acid H H p-Coumaric Acid H H
Vanillic Acid ' OCH; H Caffeic Acid OH H
Syringic Acid OCH; OCH; Sinapic Acid OCH; OCH;
Protocatechuic Acid H H Ferulic Acid OCH; H
Gallic Acid OH OH
z ft"
/e
Y P &y
X 0

Sinapines X Y Z

p-Coumaroylcholine H OH H

Feruloyicholine H OH OCH;

Isoferuloylcholine H OCH; OH

Sinapine OCH; OH OCH;

Sinapine glucoside OCH; O-Glu OCH;

Fig. 3. Chemical structures of phenolic acids and sinapines.
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the total flavonoid contents in the seeds and hulls of Polish
buckwheat variety were 18.8 and 74 mg/100 g of the dry
matter, respectively (34). Rutin, quercetin, orientin, vite-
xin, isovitexin and isoorientin were the only flavonoids
detected in buckwheat (Fig. 2 and 4) (34). Moreover, four
catechins, namely (-)-epicatechin, (+)-catechin 7-O-B-D-
glucopyranoside, (-)-epicatechin 3-O-p-hydroxybenzoate,
and (-)-epicatechin 3-O-(3,4-di-O-methyl)gallate were iden-
tified in the ethanolic extracts of buckwheat groats (35).

Corn : Phenolic acids of com are in the free, esterified
and insoluble-bound forms. Of these, the insoluble bound
phenolic acids are the predominant fraction constituting
69.2% of the total amount of phenolic acids (36). A num-
ber of phenolic acids are linked covalently to amine func-
tionalities, namely feruoylputrescine, p-coumarylputrescine,
diferuloylputrescine, di-p-coumarylputrescine, p-coumaryl-
spermidine, diferuloylspermidine and diferuloylspermine
and these are found in the embryo and aleurone of corn
(37). Ferulic acid comprises 2 ~4% of dry matter in hulls
obtained from the wet milling of com grains (38). Three
novel feruloylated disaccharides were detected in acid hy-
drolyzate of corn hulls, namely O-(2'-O-trans-feruoyl- ¢ -
L-arabinofuranosyl)-(1—3)-p-D-xylanopyronose, O-(2’-O-
methoxyl-5'-O-trans-feruoyl)- ¢ -L-arabinofuranosyl-(1—
3)-B-D-xylanopyronose and O-(2'-O-methoxyl- 5'-O-cis-
feruoyl)- @ -L-arabinofuranosyl-(1—3)-B-D-xylan opyro-
nose (39).

Commercial corn fiber is a richer source of steryl fer-
ulates than rice bran as it contains 0.12% of steryl fer-
ulates. These phenolics are located in the interior portion
of the inner pericarp layer and germ, but no steryl phenolic
acid ester was detected in the outer pericarp and endo-
sperm fractions (40). A total of 16 steryl cinnamic acid
derivatives were identified in corn bran (41).

Phlobaphene and anthocyanidin pigments are also found
in corn (42). Presence of pelargonidin-3-glucoside and
cyanidin-3-glucoside was detected in the aleurone tissue
and seed coat of corn as well as cobs (43), while phlo-
baphene pigments were found mostly in the cob and
pericarp tissues (44).

Oats : Derivatives of benzoic and cinnamic acids as well
as quinones, flavones, flavonols, chalcones, flavanones,
anthocyanins and amino phenolics were the major pheno-

lics found in oat groats and hulls (3). Ferulic acid was
a major phenolic acid present in the soluble bound and
insoluble bound phenolic acid fractions of oats (45).
Bound-phenolic acids of oat may be coupled to long-chain
alcohols, glycerol, sugars, polysaccharides, lignins, amines
and long chain omega-hydroxy fatty acids (46). Catechol,
coniferyl alcohol, gallic acid, p-hydrobenzoaldehyde, sal-
icylic acid, and vanillin were also detected in both oat
groats and hulls (47). At least 25 and 20 avenanthramides
and N-acylanthranilate alkaloids were identified oat in groat
and hull extracts, respectively (Fig. 5). Avenanthramides
are conjugates of cinnamic acid with anthranilic acids
(48). Oat groats contained 54, 36 and 52 mg/kg and hulls
25, 17 and 25 mg/kg of avenanthramides A, B and C, re-
spectively (46).

Wheats : A number of phenolic compounds, namely
ferulic, vanillic, gentisic, caffeic, salicylic, syringic, p-cou-
maric and sinapic acids (Fig. 3) as well as vanillin and
syringaldehyde were identified in wheat kernels (36,49).
Of these, ferulic acid was the primary phenolic acid in
the grain (up to 90% of total phenolic acids) during all
stages of development and is present in the seeds both
in the free and esterified forms (36,49) and comprised over
80% of total insoluble-bound phenolic acids (46). Ferulic
acid occurs in high amounts in the aleurone cell walls of
kernel and to a lesser extent in the seed coat and embryo
(15). Ferulic acid in wheat grain is esterified to arabinose
in the pentosan (50), stanol and sterol (51) and glucose
(52). A number of steryl ferulates were identified in wheat
grain and these were mainly located in the bran fraction
(34 mg/100 g). Only traces of steryl ferulates were found
in the endosperm fraction. Campestany] and sitostanyl
ferulates were the main steryl ferulates present in wheat
grain (53).

Wheat bran also contained 808 mg per kg of total ferulic
acid dehydrodimers (DiFA). Of these, 8-O-4’-DiFA was
the predominant etherified DiFA while 8,5’-DiFA was the
most abundant esterified DiFA in wheat bran (Fig. 1) (29).
According to liyama et al. (54), DiFA strengthen the al-
eurone walls during the maturation of wheat grain by
formation of bridges between two arabinoxylan chains.
Higher ratios of arabinoxylan to ferulic acid were detected
in the anticlinal aleurone-aleurone wall of wheat grain than

Compound R, R, R; Ry
Vitexin H H H C-glucosyl
Orientin H H OH C-glucosyl
Isoorientin C-glucosyl H OH H
Isovitexin C-glucosyl H H H
Tricin H OCH; OCH; H

Fig. 4. Chemical structures of some flavone derivatives.
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Ry~ S 3 o R, R;
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1 H 3 B OH OCH;,
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Fig. 5. Chemical structures of some avenanthramides.

in the periclinal walls (aleurone-endosperm or aleurone-
pericarp wall) (55). It is believed that the cross-linking
of cell walls with phenolic acids provides a physical bar-
rier against insects and microorganisms (56). Ferulic acid
residue. was also found in germ-endosperm interface. Ir-
ving et al. (5§7) demonstrated the existence of a close as-
sociation of wheat kernel hardness with the fluorescence
attributed to the phenolics in the grain,

Wheat grain also contains n-alkylphenols. Several n-
alkylphenols containing 17, 19, 21, 23 and 25 carbons cou-
pled to a resorcinol ring at the 5 position were identified
in wheat grain (58). Wheat brans contained up to six times
more alkylresorcinols than the corresponding flours (59).
A number of flavonoid pigments were also detected in
both the bran and germs of hard wheat. Of these, tricin
(5,7,4’ -trihydroxy 3’,5'-dimethoxy flavone) (Fig. 4) was
the dominant flavone pigment found in both cultivated and
wild wheats (114,115). In addition, two C-glycosylfla-
vones were isolated from wheat brans, namely 6-C-
pentosyl-8-C-hexosylapigenin and 6-C-hexosyl-8-C-pento-
sylapigenin (60).

PHENOLIC COMPOUNDS IN FRUITS AND
VEGETABLES

Consumption of fruits and vegetables has been linked
to a reduction of blood pressure, lowering incidence of
cancer and cardiovascular disease, among others. These
health-promoting effects of fruits and vegetables have
been associated with the presence of phenolics (61). On
the other hand, phenolics may affect the quality of fruits
and vegetables by participation in food discoloration and
in off-flavor development (62). The predominat phenolics
in some fruits and vegetables are provided in here.

Fruits

Apples : Hydroxycinnamic acid derivatives, flavan-3-ols
(monomeric and oligomeric), flavonols and their conju-
gates, and dihydrochalcones are the major phenolics in
apples (63,64). The total content of phenolics in most apple
varieties ranged from 1000 to 6000 mg/kg fresh weight,
but in some apple cultivars may be even over 10000 mg/kg
fresh weight (65,66). The level of phenolic compounds
varied among individual apples of the same variety (67).
Chlorogenic acid (Fig. 3) was the major hydroxycinnamic
acid (HCA) identified in the apple fruit accounting for
79, 76, 79, and 87% of total HCA in epidermis, paren-

chyma, core, and seeds, respectively (63).

Anthocyanins are found in the vacuoles of epidermal
and subepidermal cells of the skin of some red apple va-
rieties (67). Several anthocyanins, namely cyandin 3-gal-
actoside (ideain), cyanidin 3-rutinoside, malvidin 3-glu-
coside, and malvidin 3,5-diglucoside were identified in
Starking Delicious apple juice. Of these, ideain was the
predominant anthocyanins in the apple juice and in the
apple peel (68).

Phlorizidin (phloretin 2’-B-D-glucoside) and phloretin
2’-B-D-xylosyl-(1—6)-B-D-glucoside are the major di-
hydrochalcones found in apple fruits (69). The total con-
tent of dihydrochalcones in apple cortex and apple peel
was 26 ~ 122 mg of phlorizidin equivalents/kg fresh weight
and 60--500 mg/kg (63,69), respectively.

Flavonol glycosides are found predominantly in the ep-
idermis tissue of apple fruits (63,67). Several flavonol
glycosides have been identified in apple fruits, namely
rutin, hyperin (quercetin-3-B-D-galactoside), isoquerci-
trin (quercetin-3-B-D-glucoside), reynoutrin (quercetin-3--
D-xyloside), avicularin (quercetin-3- ¢ -L-arabinofurano-
side), and quercitrin (quercetin-3- ¢ -L-rthamnoside) (Fig.
2) (3,63,67).

Procyanidins are found in the entire apple fruit,
however, their level gradually increases from 1232 mg/
kg in the seeds to 4964 mg/kg in the epidermis tissue (63).
Apple procyanidins are a mixture of oligomers and pol-
ymers made of (-)-epicatechin and (+)-catechin as units
(Fig. 6 and 7) (70). High-molecular-weight procyanidins
represented over 26% of total procyanidins in the apple
fruit and those with the highest average degree of po-
lymerization (11.2) were located in the seeds (63). More
polymerized procyanidins were found in the cortex of
French apple varicties with the average degree of po-
lymerization ranging from 4.5 (var. Judor) to 50.3 (var.
Avrolles) (66) and up to 190 in the cortex of two cider
apple varieties (Malus domestica; var. Kermerrien and
Avrolles) (71).

Blueberries : Blueberries are a rich source of phenolic
acids, catechins, flavonols, anthocyanins and proanthocy-
anidins (3,72). Phenolic acids identified in blueberries in-
clude gallic (0~2589 mg/kg), caffeic (0~63.2 mg/kg), p-
coumaric (24 ~157 mg/kg), ferulic (30.2~169.7 mg/kg)
and ellagic acids (2.2 ~66.5 mg/kg fresh weight) (Fig. 3)
(72). A number of anthocyanins were isolated and iden-
tified in bluberries, namely 3-galactosides and 3-arabin-
osides of cyanidin, delphinidin, peonidin, petunidin and
malvidin (Fig. 8), and 3-glucosides of cyanidin, delphin-
idin, peonidin, petunidin and malvidin (73). The total
content of anthocyanins in blueberries was between 127
and 1973.4 mg cyanidin 3-glucoside equivalents/kg fresh
weight (74). Lowbush blueberries contained almost 50%
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Compound R, R, R3
Cyanidin OH H H
Delphinidin OH OH H
Pelargonidin H H H
Petunidin OCH; OH H
Malvidin OCH; OCH; H

Fig. 8. Chemical structures of some anthocyanins.

more anthocyanins than highbush blueberries (164). Cat-
echin (145.3 ~3874.8 mg/kg fresh weight), myricetin (67.2
~99.9 mg/kg fresh weight), quercetin (58.2~146 mg/kg
fresh weight), and kaempferol (25.1 ~37.2 mg/kg fresh
weight) were also detected in blueberries (Fig. 2 and 6).
Gu et al. (75) reported that blueberry contained 19990 mg
/kg dry weight of procyanidins. A number of oligomeric
B-type procyanidins from dimers to octamers has been
identified in blueberry (Fig. 6) (76). The polymeric procy-
anidins comprised over 76% of total procyanidins and
were a mixture of polymers with a degree of polymeri-
zation ranging from 14.4 to 114.1 (75).

Citrus fruits : Cinnamic acid derivatives, coumarins and
flavonoids (flavanones, flavones and flavonols) are the
major groups of phenolic compounds occurring in citrus
fruits (3). Phenolic acids are predominantly located in the
flavedo of citrus fruits in the form of esters, amides and
glycosides (77). Hydroxycinnamic acids have been associ-
ated with the development of off-flavor in citrus fruits and
their products. Ferulic and p-coumaric acid esters were
implicated as substrates for the formation of unpleasant
compounds such as” p-vinylguaiacol (PVG) and p-vinyl-
phenol (3).

Flavanone glycosides (Fig. 9) such as naringin, neoeri-

Rz
OR;3
R40 l ¢} ‘
Ry
OH O
Compound R, R, R; Ry
Didymin rutinosyl H CH; H
Eriocitrin rutinosyl OH H H
Hesperidin rutinosyl OH CH; H
Neoeriocitrin neohesperidosyl OH H H
Naringenin H H H H
Naringin neohesperidosyl H H H
Neohesperidin neohesperidosyl OH CH; H
Narirutin rutinosyl H H H

Fig. 9. Chemical structures of some flavanone derivatives found
in citrus fruits.

ocitrin and hesperidin comprise 50~80% of total flavo-
noids in citrus fruits (78). Naringin, naringenin 7-neohes-
peridoside and narirutin, naringenin 7-rutinoside are the
major glycosides found in grapefruit, while narirutin, and
hesperedin, hesperetin 7-rutinoside in sweet oranges. On
the other hand, sour oranges contain 7-neohesperidosides,
namely naringin and neohesperidin as well as hesperetin
7-neohesperidoside. (78). Hesperedin, narirutin and didy-
min (isosakuranetin 7-rutinoside) were the predominant
flavanone glycosides in Navel (79) and blood oranges (80).

Polymethoxylated flavones (PMF) (Fig. 10) are unique
phenolic compounds in citrus species, and are mostly ac-
cumulated in the peel (81). The PMF profile in the citrus
fruit is fingerprint of each species (82). Nobiletin (5,6,7,
8,3',4'-hexamethoxyflavone) and sinensetin (5,6,7,3",4'-
pentamethoxyflavone) have been identified in orange peel,
while tangeretin, 3,5,6,7,8,3’,4'-heptamethoxyflavone, 5,7,
8,4'-tetramethoxyflavone; and-5,7,8;3",4'-pentamethoxy-
flavone have been found in grapefruits (83). Edible parts
of citrus fruits contained nobiletin (7~ 173 mg/kg dry
weight), 3,5,6,7,8,3',4’-heptamethoxyflavone (0~87 mg/
kg dry weight), natsudaidain (5,6,7,8,3’,4'-hexametoxy-
methoxyflavone) (0~ 69 mg/kg dry weight) and tangeretin
98 ~62 (mg/kg dry weight) (84).

Glycosylated flavones have been detected in citrus
fruits. Of these, diosmin (4'methoxy-5,7,3'-trihydroxy-
tlavone-7-rutinoside) and neodiosmin (4'methoxy-5,7,3'-
trihydroxytlavone-7-neohepseridoside) were the predomi-
nant glycosylated flavones identified in citrus fruits. The
peel flavedo contained higher amounts of diosmin and
neodiosmin than albedo of the peel, and only small
quantities of these phenolics were found in the pulp (85).
High levels of these two flavones were detected during
the early stages of fruit development and then their levels
were gradually decreased (86). The content of diosmin in
immature citrus fruits was from O to over 30 g/kg dry

Compound R; Ry
Sinensetin OCH; H OCH; H
Tetramethylscutellarein OCH; H H H
Isosinensetin H OCH; OCH; H
Nobiletin OCH; OCH; OCH; H
Tangeretin OCH; OCH; H H
Heptamethoxyflavone OCH; OCH; OCH; OCH;
Natsudaidain OCH; OCH; OCH; OH

Fig. 10. Chemical structures of some polymethoxylated flavones
found in citrus fruits.
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weight, while in mature fruits it did not exceed 4 g/kg
dry weight. On the other hand, the content of neodiosmin
was 4.8 ~9 g/kg dry weight in immature fruits and 0.45~
1.1 g/kg dry weight in mature fruits (85).

Cranberries . Cranberry fruits serve as an excellent
source of anthocyanins (73), flavonol glycosides, proantho-
cyanidins (87) and phenolic acids (88). Cranberries con-
tain about 1 gf/kg fresh weight of phenolic acids, predom-
inantly as glycosides and esters (88,89). Sinapic, caffeic
and p-coumaric acids were the most abundant bound phe-
nolic acids while p-coumaric, 2,4-dihydroxybenzoic and
vanillic acids were the predominant free phenolic acids
found in cranberry (Fig. 3) (88). The predominant anth-
ocyanins in American cranberries were 3-O-galactosides
and 3-O-arabinosides of cyanidin and peonidin, while 3-
O-glucosides of cyanidin and peonidin in European cran-
berries (73). The total content of anthocyanins in cranberry
fruits ranged from 180 to 656 mg/kg fresh weight (90)
and these were located under the fruit skin (73). Whole cran-
berries contained approximately 17 mg/kg of total proantho-
cyanidin (76) and the polymeric proanthocyanidins com-
prised 63% of total proanthocyanidins in cranberries (75).

Grapes : Grape seeds and skins are an excellent source
of health-promoting flavonoids such as proanthocyanidins,
flavonols and flavan-3-ols (91). Of these, proanthocyani-
dins are the major polyphenols present. Procyanidins are
the predominant proanthocyanidins in grape seeds, while
procyanidins and prodelphinidins are dominant in grape
skins and stems (91). The mean degree of polymerization
for proanthocyanidins isolated from the seed and skin of
grapes (cv. Cabernet franc) ranged from 4.7 to 17.4 and
from 9.3 to 73.8, respectively (91,92).

Whole grape berries and skins also contain phenolic
acids such as caftaric acid (¢rans-caffeoyltartaric acid),
coutaric acid (p-coumaryltartaric acid), and trans-fertaric
acid (91), flavonols such as quercetin 3-glucuronide, quer-
cetin 3-glucoside, myricetin 3-glucuronide, and myricetin
3-glucoside (93), and flavanonols, such as astilbin (dihy-
droquercetin 3-rhamnoside) and engeletin (dihydrokaemp-
ferol 3-rhamnoside) (91).

Stilbenes are phytoalexins detected in grape leaves and
berries (Fig. 11). These include trans- and cis- resveratrols
(3,5,4' -trihydroxystilbene), trans- and cis-piceids (3-O-B-
D-glucosides of resveratrol), trans- and cis-astringins (3-
O-B-D-glucosides of 3’-hydroxyresveratrol), trans- and cis-
resveratrolosides (4'-O-B-D-glucosides of resveratrol), and
pterostilbene (a dimethylated derivative of stilbene). In
berries stilbenes are mostly located in the grape skin (94).
cis-Piceid was the predominant stilbene found in berry
skins during fruit ripening (39.5 mg/kg fresh weight at
60 days after véraison), while resveratrol was the main
stilbene in wilting berries (28 mg/kg at day 74) (94).
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R = glucose; trans-Piceid
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Fig. 11. Chemical structures of some stilbens.

Pomegranates : Pomegranates are a rich source of hy-
drolyzable tannins and anthocyanins. The total content of
anthocyanins and hydrolyzable tannins ranged from 161.9
to 387.4 mg/L and from 417.3 to 556.6 mg/L, respectively
(95). Several anthocyanins were detected in pomegranate
juice, namely cyanidin 3-glucoside (59.5~128.3 mg/L),
delphinidin 3-glucoside (23.6~95.2 mg/L), cyanidin 3,5-
diglucoside (31.4~71.4 mg/L), delphinidin 3,5-digluco-
side (21.1~61.1 mg/L) and pelargonidin 3-glucoside (3.9
~8.5 mg/L) (95). Furthermore, the presence gallotannins,
ellagic acid tannins and gallagy! esters such as punicalagin
and punicalin in pomegranates were also reported. Of
these, gallagyl type tannins were the major tannins in
commercial pomegranate juice which contained 1500~
1900 mg/L of punicalagin (95).

Vegetables

Carrots : The total content of soluble phenolics in car-
rots ranged from 5088 to 7699 mg/kg dry weight (96).
Phenolic acids and isocoumarins were the predominant
phenolics in carrots {97). The total content of phenolic
acids in fresh carrots ranged from 77.2 mg/kg fresh weight
for yellow varieties to 746.4 mg/kg fresh weight for purple
varieties (98). Major phenolic acids in carrots included p-
hydroxybenzoic acid, syringic acid and 3’-caffeoylquinic
acid (neochlorogenic acid), 5'-caffeoylquinic acid (chloro-
genic acid), 3'-, 4'- and 5’-feruoylquinic acids, 3’- and
5’-p-coumaroylquinic acids, 3',4'- and 3’,5'-dicaffeoyl-
quinic acids and 3’,4’- and 3',5'-diferuoylquinic acids
(Fig. 3) (96-98). The total content of phenolic acids es-
terified to cell wall material of carrots was between 324.8
mg/kg of cell wall carbohydrate in mature and 661.1 mg/kg
in stored carrots (99). Over 30% of total ferulic acid ex-
isted in the dehydrodimer form (Fig. 1) (99). Cell wall
material also contained small amounts of vanillic, p-
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coumaric, trans- and cis-ferulic acids as well as vanillin
and p-hydroxybenzaldehyde (99). Moreover, the presence
of coumarins, namely 6-methoxymellein and 6-hydroxy-
mellein was also reported in carrot tissues (Fig. 12) (100).

These compounds were predominantly accumulated in
the periderm tissue of carrot root and their concentrations
decreased incrementally from the peel to vascular tissues
(101). The reported levels of 6-methoxymellein in whole
carrots ranged from 0 to 400 mg/kg dry weight (96).

Lettuce : Several phenolic acids, namely caffeoyltartaric,
chlorogenic, dicaffeoyltartaric and 3’,5’-dicaffeoylquinic
acids have been identified in red lettuce (cv. Lollo Rosso)
(102), as well as iceberg and romaine lettuce (103). The
total content of phenolic acids in whole red lettuce ranged
from 65 to 270 mg/kg fresh weight (104). On the other
hand, whole romaine, iceberg and butter leaf lettuce con-
tained only between 2.83 and 45 mg phenolic acids/kg
fresh weight (103).

Lettuce is also a good source of flavonoids. Several
quercetin conjugates were detected in both red pigmented
and green leaf lettuce, namely quercetin 3-(6-malonyl-
glucoside), quercetin 3-glucoside, quercetin 3-glucuronide,
quercetin 3-rhamnoside, quercetin 3-galactoside, and quer-
cetin 3-(6-malonylglucoside)-7-glucoside (102). Red let-
tuce varieties contained higher levels of flavonoids than
did green lettuce variecties. Green leaf and head lettuce
varieties contained 2 ~54 and 1 ~28 mg quercetin/kg fresh
weight, respectively (105). On the other hand, the outer
and inner leaves of “Lollo Rosso” red lettuce contained
911 and 450 mg quercetin/kg fresh weight, respectively.
In addition, the red tissues of “Lollo Rosso” lettuce con-
tained 3~ 8 times more phenolics and 5~ 30 times more
flavonoids than the white and green tissues (106,107).

Onions . Onions are rich in flavonoids and serve as one .

of the major sources of flavonols such as quercetin, iso-
rhamnetin, myricetin (Fig. 2) and kaempferol conjugates
in the diet (107). Of these, the quercetin and its conjugates
are the predominant flavonols in onions (108). The content
of quercetin conjugates in bulbs of red onion cultivars
ranged from 110 to 295 mg quercetin equivalents per kg,
between 119 and 286 mg quercetin equivalents per kg in

Ry ©
jo et
R; CH;
Compound R, R,
6-Methoxymellein OH OCH;3
Mellein OH OH
6,8-Dimethoxymellein OCH; OCH;

Fig. 12. Chemical structures of some coumarins.

bulbs of yellow onion cultivars (107,108) and varied from
185 to 634 mg quercetin equivalents per kg in bulbs of
white onion cultivars (107).

The flavonols are mostly concentrated in the skin which
contained from 5.3 to 34.15 g quercetin equivalents per
kg fresh weight. In the scales, abaxial epidermis of scales
contained a higher level of flavonols than did the mes-
ophyll. In addition, approximately 50% of flavonols pres-
ent in onions were accumulated in the top quarter part
of the scales. Anthocyanins are mostly concentrated in the
red onion skin and the outer fleshy layer (3,107). A number
of anthocyanins were identified in red onions, namely peo-
nidin 3-glucoside, cyanidin 3-glucoside and cyanidin 3-
arabinoside and their malonylated derivatives, cyanidin 3-
laminariobioside, and delphinidin and petunidin deriva-
tives (109).

Peppers : Total content of soluble phenolics in green
pepper ranged from 1180 to 3849-mg chlorogenic -acid
equivalents/kg fresh weight (110). Flavonoids and capsai-
cinoids were the predominant phenolics found in pepper.
Capsaicinoids are responsible for the development of pun-
gency in pepper (111). The total content of capsaicinoids
in the fruits of pepper was between 189 and 778 mg/kg
fresh weight (111). The apical pepper fruits contained
higher levels of caspaicinoids (1090 mg/ kg dry weight)
compared to those harvested from the middle and basal
(780 mg/kg dry weight) segments of the plant (112).

Capsaicinoids are acid amides of vanillylamine and Cjg
and C;3 branched fatty acids (Fig. 13) (113). Over 15 cap-
saicinoids have been isolated and identified (113). Of
these, capsaicin (8-methyl-N-vanillyl-6-nonenamide) and
dihydrocapsaicin contribute about 90% to the total pun-
gency. Nordihydrocapsaicin is considered to be a third
major pungent principle in the pepper fruit (114). These
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Fig. 13. Chemical structures of some capsaicinoids.
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compounds are accumulated predominantly in the epider-
mal tissue of the placenta (114).

Small amounts of phenolic acids such as protocatechuic,
chlorogenic, coumaric and ferulic acids (Fig. 3) as well
as their glycoside were also detected (115). Moreover,
quercetin and luteolin, two major flavonoids, were found
in pepper fruits (Capsicum species) in the form of gly-
cosidic conjugates (116). The total content of flavonoids
in pepper cultivars was 1.75~851.53 mg/kg fresh weight
(110).

Spinach : Total content of phenolics in fresh spinach
(Spinacia oleracea) leaves ranged from 1629 to 4835
mg chlorogenic acid equivalents/kg of fresh weight. Fur-
thermore, spinach harvested in the spring contained higher
levels of total phenols than that grown in the fall (117).
Moreover, the total content of flavonoids in fresh-cut
spinach was between 807 and 2241 mg of flavonoids/kg
fresh weight (117). Spinach flavonoids such as patuletin
(quercetagetin 6-methyl ether), jaceidin, and spinacetin
(quercetagetin 6,3'-dimethy] ether) conjugates (Fig. 14)
(118) and methoxyflavones accounted for 21.8, 32.4, 6.3,
and 39.5% of the total flavonoids in spinach leaves, re-
spectively (117).

Tomatoes : Flavonols, the predominant phenolics, are
located mostly in the tomato skin and only small quantities
are found in the flesh and seeds (119). Cherry tomatoes
contained a much higher level of flavonols (17 ~203 mg/
kg fresh weight) than larger size tomato cultivars (2.2 and
11.2 mg/kg freash weight) (107). These compounds are a
mixture of quercetin 3-rhamnosylglucoside (rutin), quer-
cetin 3-rhamnosyldiglucoside, kaempferol 3-rhamnosylglu-
coside and kaempferol 3-rhamnosyldiglucoside. Of these,
rutin was the major flavonol in tomatoes (Fig. 2) (119).

PHENOLIC COMPOUNDS IN OILSEEDS

The predominant phenolic compounds of oilseed prod-

Spinatoside

Jaceidin

Fig. 14. Chemical structures of some phenolic compounds found
in spinach.

ucts belong to the phenolic acid, coumarin, flavonoid, tan-
nin and lignin group of compounds (3). Major phenolic
compounds present in the seeds of borage, canola/rape-
seed, evening primrose, flax, sesame, as well as in soy-
beans and olive fruits are discussed here.

Borage seeds

Wettasinghe et al. (120) positively identified rosmarinic,
syringic and sinapic acids in the ethanolic extract of
borage meal. Subsequently, Zadernowski et al. (121) found
185 mg of total phenolic acids/kg of defatted borage meal.
Free phenolics were the predominant form of phenolic
acids and comprised 69.3% of the total phenolic acids in
borage meal. Ferulic acid accounted for 50.2% of the total
free phenolic acids, while protocatechuic, p-hydroxyben-
zoic, and p-hydroxyphenyllactic acids contributed 40.5%
to the total free phenolic acids.

Canola/rapeseed

The total content of phenolic acids in rapeseed protein
products ranged from 13248 to 18370 mg/kg of defatted
meal and from 6235 to 12809 mg/kg of flour, on a dry
weight basis. On the other hand, rapeseed and canola hulls
contain only 600 to 2400 mg of sinapine/kg sample (122).
Phenolic acids of rapeseed occur in the free, esterified,
glycosidic and insoluble-bound forms. Esterified phenolic
acids comprised up to 90% of phenolic acids present in
rapeseed and canola (123). Sinapine, the choline ester of
sinapic acid, was the predominant phenolic ester in ra-
peseed (124) while sinapic acid constituted over 73% of
free phenolic acids and about 99% of the phenolic acids
released from esters and glycosides (Fig. 3) (125). Minor
phenolic acids were p-hydroxybenzoic, vanillic, gentisic,
protocatechuic, syringic, p-coumaric, ferulic and caffeic
acids (Fig. 3) (125).

The total content of condensed tannins in canola and
rapeseed hulls, calculated as the sum of soluble and in-
soluble tannin contents, ranged from 19130 to 62130 mg/
kg of oil-free hulls (126). The content of soluble condensed
tannins in hulls of canola and rapeseed varieties ranged
from 234 to 27190 mg/kg of hulls (122). The insoluble
tannins may comprise 70.0~95.8% of the total condensed
tannins in canola and rapeseed hulls (126).

Flaxseed

Flaxseed contains 8000 ~ 10000 mg total phenolic acids/
kg of seeds. The content of esterified and etherified phe-
nolic acids was up to 5000 mg/kg and 3000 ~ 5000 mg/kg,
respectively (127). Trans-ferulic and trans-sinapic acids
were the major, while frans-caffeic, p-coumaric and p-
hydroxybenzoic the minor phenolic acids found in de-
hulled, defatted flaxseed meal (Fig. 3) (128). Flavonoids
and lignans were the predominant phenolics in flaxseed.
The total content of flavonoids in the seeds ranged from
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350 to 710 mg/kg (129). Flavone C- and O-glycosides
were the major flavonoids present in flaxseed cotyledons
(130). Secoisolariciresinol diglucoside (SDG) was iden-
tified as a major lignan of flaxseed (131) while isolari-
ciresinol, pinoresinol, and matairesinol were identified as
minor lignan components (132). The content of secoiso-
lariciresinerol and matairesinol in flaxseed was 3700 and
10870 mg/kg, respectively (131).

Evening primrose

Lu and Foo (133) identified a procyanidin gallate oli-
gomer in evening primrose seeds. Later, Shahidi et al.
(134) reported that evening primrose seeds contained
both catechins as well as dimers and trimers of proan-
thocyanidins. Subsequently, Wettasinghe et al. (135) de-
tected (+)-catechin, (-)-epicatechin and gallic acid in ac-
etone extracts from evening primrose seed. Recently, Ham-
burger et al. (136) discovered three triterpenoid caffeates
in cold-pressed, non-raffinated evening primrose oil, name-
ly 3-O-trans-caffeoyl derivatives of betulinic, morolic, and
oleanolic acids. Evening primrose seeds contained also
small quantities of phenolic acids (124 mg of total phenolic
acids/kg defatted meal). Free phenolic acids comprised
69% of total phenolic acids content. Protocatechuic acid
was the predominant phenolic acid and constituted 58.5%
of the total free phenolic acids present (121).

Olives

Secoiridoids, oleuropein, demethyloleuropein, and ligs-
troside were the main phenolic glucosides, while verba-
scoside (caffeoylrhamnosylglucoside of hydroxytyrosol)
was the main hydroxycinnamic acid derivative of olive
fruit (137). Oleuropein is the major phenolic compound
responsible for the development of bitterness in olive fruits
(138). Phenolic acids, namely hydroxycinnamic, hydroxy-
benzoic, hydroxycaffeic, and hydroxyphenylacetic acids
were also reported in olive fruits (139). Flavonoids, in-
cluding quercetin, rutin (Fig. 2), luteolin 7-glucoside and
apigenin glucosides (73) as well as hydroxy-isochro-
mans, namely 1-phenyl-6,7-dihydroxy-isochroman and
1-(3"-methoxy-4'-hydroxy)phenyl-6,7-dihydroxy-isoc
hroman (140) were also identified in olive fruits. The con-
centration of hydroxytyrosol and hydroxytyrosol deriva-
tives in table olive fruits ranged from 100 to 430 mg/kg
and from 3670 to 5610 mg/kg, respectively (139), while
the content of verbascosides in olive fruits from Italian
cultivars was 160~3200 mg/kg (141). On the other hand,
the contents of rutin and luteolin 7-glucoside, two main
flavonoids in olive fruits (142), ranged from 110 to 660
and from 5 to 600 mg/kg, respectively (138).

Sesame
Sesame seeds contain carboxyphenols and lignophenols
(143). The major lignans of sesame seed are sesamin (200

~500 mg per 100 g) and sesamolin (200~ 300 mg per
100 g). Furthermore, sesamolinol and sesaminol were
found in both seeds and oil (Fig. 15) (144). Several pino-
resinol ghicosides were also detected in sesame seed,
namely pinoresinol 4'-O-B-D-glucopyrancsyl (1—6)-B-D-
glucopyranoside, pinoresinol 4’-O-B-D-glucopyranosyl (1
—2)-B-D-glucopyranoside and pinoresinol 4’-O-B-D-glu-
copyranosyl (1—2)-p-D-glucopyranosyl (1—2)-B-D-glu-
copyranoside (145). In addition, trans-caffeic, trans-p-cou-
maric and trans-ferulic acids and traces of p-hydroxy-
benzoic acid were found in sesame flour (Fig. 3) (128).

Soybeans

Soybeans contain anthocyanins, flavonols, flavones, iso-
flavones and chalcones as well as their derivatives with
acetic, p-hydroxybenzoic, caffeic, coumaric, ferulic, gallic,
malonic, hydroxycinnamic, oxalic and sinapic acids (146).
Of these, the isoflavones (Fig. 16) are of much interest
because of their health-promoting effects (147). Several
isoflavones, namely daidzein (7,4'-dihydroxyisoflavone),
glycitein (7,4’-dihydroxy-6-methylisoflavone) and genis-
tein (6,7,4’-trihydroxyisoflavone) have been identified in
soybean protein products. These compounds occur in soy-
bean and soy foods in the form of glucosides (daidzin,
glycitin, genistin), malonylglucosides (6”-O-manoyldaidzin,
6”-O-manoylglycitin, 6”-O-manoylgenistin), acetylgluco-
sides (6”-O-acetyldaidzin, 6”-O-acetylglycitin, 6”-O-ace-
tylgenistin} and also in the free form (146). The total con-
tent of isoflavones in soybeans ranged from 472 to 4200
mg/kg (148). Presence of phytoalexins such as coumestrol
(7,12-dihydroxy-coumestan), a coumestan isoflavone, and
glyceollins I, II and III indicates exposure of soybean to
microorganisms (149).

FACTORS AFFECTING THE LEVEL AND
BIOAVAILABILITY OF PHENOLICS IN PLANTS

The level of phenolics in food derived from plant sour-

Sesaminol [o] Sesamol

Fig. 15. Chemical structure of some phenolic compounds found
in sesame seeds.
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Fig. 16. Chemical structures of some isoflavones found in soybean.

ces depends on such factors as cultivation techniques em-
ployed, cultivar, growing conditions, ripening process, as
well as processing and storage conditions, among others.
For example, peeling, chopping, boiling, microwaving, and
frying onions lowers their total content of quercetin con-
jugates from 1% in case of chopping to up to 75% in
case of boiling onions in water (150). On the other hand,
storage of whole parsnips at +4°C for 7 days brought about
an increase in furanocoumarins from ! mg/kg fresh weight
to 33 mg/kg fresh weight, while storage of parsnips at
-18°C up to 50 days did not markedly affect the content
of furanocoumarins (151).

The content of some phenolics may increase under
stress conditions such as UV radiation, infection by
pathogens and parasites, wounding, air polution, and ex-
posure to extreme temperatures (152). In grapes, the syn-
thesis of stilbenes (Fig. 11), namely trans- and cis-res-
veratrols, trans- and cis-piceids (3-O-B-D-glucosides of
resveratrol), trans- and cis-astringins (3-O-B-D-glucosides
of 3'-hydroxyresveratrol), trans- and cis-resveratrolosides
(4'-O-B-D-glucosides of resveratrol) and pterostilbene (a
dimethylated derivative of stilbene) is induced by fungal
infection (Botris cinerea), injury, UV radiation, and wilt-
ing as well as such factors as grape cultivar, developmental
stage of the berry, and soil cultivation practices (153). In
carrots, the synthesis of 6-methoxymellein (isocoumarin)
(Fig. 12) is stimulated by their exposure to ethylene (154)
and to UV radiation (3,154), by microbial infection by
wounding (101) and storage at elevated temperatures (154).

Information on the bioavailability and absorption of plant
phenolics is still fragmentary and controversial. Bioavail-
ability and absorption of plant phenolics in the small in-
testine of human body is influenced by such factors as
molecular size, lipophilicity, solubility, and pK, as well

as gastric and intestinal transit time, membrane permea-
bility, and pH of the lumen (155).

TOXICANT ACTIVITY

The published data on the toxicity of food phenolics
are still fragmentary. Phenols may become toxic if natural
barriers or detoxification mechanisms are overloaded by
the amount of ingested phenols, but the toxicity level of
phenols depends also on the manner of their administration
and is affected by the presence of substances containing
di-ether or isopropenoid structures (156). Low- and high-
molecular- weight phenolics may bring about nutritional
implications by consuming the metabolized energy in their
detoxification process or by lowering the contribution of
methyls or glucuronic acid to more useful metabolisms
(157). Daily intake of flavonoids, from common food-
stuffs, produce very low toxicities because of their low
absorption, rapid metabolism, as well as the presence of
an efficient defence mechanism in mammals. Excessive
intake of flavonoids, above that obtained from a typical
vegetarian diet may, however, pose a serious health risk
for humans. At higher doses, flavonoids may inhibit key
enzymes involved in hormone metabolism, generate free
radicals as well as may act as potent mutagens (158-160).

Singleton and Kratzer (156) reported that the LDsg val-
ues for a single dose of tannins orally administered to rats,
mice and rabbits ranged from 2.25 to 6.00 g per kg of
body weight. Isocoumarins, 6-hydroxymellein and 6-meth-
oxymellein found in carrots, also displayed toxic effects
on the animal cells, microorganisms and plant cells. The
toxic effects exerted by 6-methoxymellein on Chinese
hamster cells (ECsp=0.46 mM) were much lower than that
exerted on microorganisms and plant cells (ECso=0.04 ~
0.05 mM) (161). On the other hand, Wren et al. (162) did
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not detect any significant toxicological effects in rats con-
suming grape extract containing less than 5.5% catechin
monomers. The rats used in this study were fed for 90
days with a diet containing 0, 0.5, 1.0, and 2.0% of grape
extract. Furthermore, Lake (163) suggested that coumarins
do not cause any health risk to humans at the maximum
human daily intake estimated to be 0.02 mg/kg/day.

Several flavonoids, namely quercetin, thamnetin, rutin,
kaempferol as well as some extracts-from citrus displayed
mutagenicity in bacterial cells (164). Furthermore, Buen-
ing et al. (165) reported that nobiletin, tangeretin and 7,8-
benzoflavone increased metabolic activation of benzo[a]
pyrene and aflatoxin B; to mutagens. Subsequently, De-
laney et al. (166) demonstrated that standardized poly-
methoxylated flavones from citrus did not exhibit any
mutagenicity in both bacterial cell and mammalian cell
lines.

HEALTH EFFECTS

Health potentials of food phenolics have been exten-
sively reviewed (8,167) Therefore, only some aspects of
pharmacological potentials of food phenolics will be
discussed here.

Gibson et al. (168) and Howell (169) demonstrated that
cranberry proanthocyanidins may be responsible for the
inhibition of cellular adherence of uropathogenic strains
of P-type (mannose-resistant) Escherichia coli to mucosal
cells in the urinary tract. It has been suggested that these
compounds competitively inhibit the adhesion of Esche-
richia coli to mucosal cells through receptor-ligand inter-
actions (169). Subsequently, Foo et al. (170) reported that
cranberry proanthocyanidins with A-type linkage displayed
greater antiadhesion activities than those with B-type
linkage.

Plant flavonoids also exhibited a significant antiviral
activity. Quercetin, a flavonol aglycone, found in a number
of fruits such as apple, apricot, fig, plum, strawberry, and
tomato, among others, displayed antiviral activities against
herpes simplex virus type 1, parainfluenza virus type 3
and polio virus type 1 both in the in-vivo and in-vitro
studies (171). On the other hand, hesperetin inhibited the
infectivity of herpes simplex type viruses, polio viruses,
and parainfluenza viruses (172), while tannins from peri-
carp of pomegranate displayed antiviral activity against the
genital herpes virus (173).

Grape seed procyanidins suppressed the stomach muc-
osal injury caused by acidified ethanol (174). It has been
suggested that the antiulcer property of grape procyanidins
may be due to both their radical scavenging activity and
their ability to bind to proteins (174). Other reported bio-
logical activities of grape seed extracts include antiath-

erosclerotic (175), antidiabetic (176), and anticarcinogenic
activities (177).

Isoflavones not only exhibit estrogenic activities, but
also protect against several chronic diseases. Consumption
of soybean isoflavones lowers the incidence of breast,
prostate, urinary tract and colon cancers as well as pro-
vides protection against coronary heart diseases and oste-
oporosis (178). In addition, isoflavones exhibit marked inhib-
itory activity against oxidation of lipoprotein in serum (179).

Biological activities of citrus flavonoids has been ex-
tensively studied (180). Auraptene (7-geranyloxycoumarin)
found in citrus fruit peel was an effective inhibitor in rat
colon (180). Flavanones also suppress carcinogenesis (181)
and in addition showed antiallergic and anti-inflammatory
properties (182). On the other hand, polymethoxylated fla-
vones inhibited the formation of tumor necrosis factor- @
in culture of human monocytes (183). Diosmin is an active
component of some drugs used for the treatment of cir-
culatory system illnesses (184) and severe hemorroidal dis-
ease (185).

Quercetin and rutin found in vegetables and fruits sup-
pressed the colonic neoplasia induced by azoxymethanol
(186). Quercetin also displays vasoactive properties (187),
gastroprotective effect (188), as well as an inhibitory
effect on the mutagenic activity of heterocyclic amines
(HCA). The suppression of the HCA activity is due to
the inhibition of metabolic activation of HCA in the liver
(189).

FUTURE TRENDS

In spite of significant progress in research on plant phe-
nolics during the last 25 years, the published data on the
content, composition and bioactivity of plant phenolics are
still incomplete and often restricted to few cultivars. In
addition, data on the effect of different steps in the food
production on the bioactive phenolics is very limited.
Therefore, there is still a need to expand research to great-
er variety of cultivars and include plants of great eco-
nomical significance such as palm kernel, banana, pine-
apple, rye, rice, evening primrose, and borage, among
others, as well as to determine the effect of processing
on bioactive phenolics. In addition, not all bioactive phy-
tochemicals have been identified and/or their health-pro-
moting properties documented fully. Thus, there is also
a need to continue research efforts leading to the discovery
of novel potent bioactive phytochemicals and to ascribe
their role in promoting health.

Epidemiological studies have provided evidence on the
existence of correlation between consumption of some
foods of plant origin and the prevention of certain chronic
diseases such as coronary heart diseases and cancer (190).
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Therefore, there is a growing demand by consumers for
food products containing high levels of health-promoting
phytochemicals. These demands can be met by extracting
bioactive components from by-products such as citrus
peels and grape seeds and using them as such or adding
them to foods, selecting cultivars high in bioactive com-
ponents or formulating-heaith promoting supplements. On
the other hand, potential adverse effects of excessive intake
of flavonoids should not be overlooked, as at high intakes
plant phenolics may act as mutagens, prooxidants and in-
hibitors of key enzymes (160). Thus, more research is still
needed to establish possible toxicological effects asso-
ciated with high intake of phenolics.

The biosynthesis, localization within the cell, and spe-
cific function of phenolics in plants has been studied ex-
tensively and considerable progress made. However, there
are still, according to Harborne (191), many challenges
that must be overcome in order to fully understand the
physiological function of phenolics at different stages of
plant development, and the mechanisms responsible for the
diversity of phenolics in plants and accumulation of phe-
nolics at cellular, subcellular and tissue levels. Metabolism
of phenolics and identification of their metabolites also
deserves further studies.

SOURCES OF FURTHER INFORMATION
AND ADVICE

This review paper provides only an overview of plant
phenolics found in some cereals, fruits, vegetables and
oilseeds. A number of excellent books and reviews on
various aspects of the chemistry, biological properties and
health effects of plant phenolics have recently been pub-
lished. In this section only some sources of information
were highlighted. Biological role of phenolics in plant is
discribed in books edited by Cosgrove and Knievel (192),
Macheix et al. (193), Scalbert (7) and Tomés-Barberan and
Robins (194). More comprehensive reviews of the chem-
istry of plant phenolics are provided in books published
by Haslam (195), Macheix et al. (193), Mazza (196), Mazza
and Miniati (73), Mazza and Oomah (197), Scalbert (7),
and Shahidi and Naczk (3). Excellent reviews on dietary
intake and absorption and metabolism of phenolics were
recently published by Scalbert and Williams (198). Health
effects are thoroughly discussed in books published by
Bidlack et al. (167, 190), Ho et al. (199), Huang et al. (200),
Mazza (196), Mazza and Oomah (197), and Scalbert (7).
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