DOI QR코드

DOI QR Code

Phenolic Compounds in Plant Foods: Chemistry and Health Benefits

  • Naczk, Marian (Department of Human Nutrition, St Francis Xavier University) ;
  • Shahidi, Fereidoon (Department of Biochemistry, Memorial University of Newfoundland)
  • Published : 2003.06.01

Abstract

Phenolic compounds in food and plant materials belong to the simple phenols, phenolic acids, coumarins, flavonoids, stilbenes, tannins, lignans and lignins, all of which are considered as secondary plant metabolites. These compounds may be synthesized by plants during normal development or in response to stress conditions. Phenolics are not distributed uniformly in plants. Insoluble phenolics are components of cell walls while soluble ones are present in vacuoles. A cursory account of phenolics of cereals, beans, pulses, fruits, vegetables and oilseeds is provided in this overview. The information on the bioavailability and absorption of plant phenolics remains fragmentary and diverse. Pharmacological potentials of food phenolics ave extensively evaluated. However, there are many challenges that must be overcome in order to fully understand both the function of phenolics in plant as well as their health effects.

Keywords

References

  1. Harborne JB. 1982. Introduction to Ecological Biochemistry.2nd edition, Academic Press, New York, NY.
  2. Beckman CH. 2000. Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general responses in plants? Physiol Molec Plant Pathol 57: 101-110 https://doi.org/10.1006/pmpp.2000.0287
  3. Shahidi F, Naczk M. 2003. Phenolics in Food and Nutr-aceuticals: Sources, Applications and Health Effects. CRC Press, Boca Raton, FL.
  4. Wink M. 1997. Compartmentation of secondary metabolites and xenobiotics in plant vacuoles. Adv Botan Res 25: 141-169 https://doi.org/10.1016/S0065-2296(08)60151-2
  5. Prez-Ilzarbe FJ, Martinez V, Hernandez T, Estrella I. 1992. Liquid chromatographic determination of apple procyanidins. J Liq Chromatogr 15: 637-646 https://doi.org/10.1080/10826079208018822
  6. Wallace G, Fry S. 1994. Phenolic components of the plant cell wall', Internat Rev Cytol 113: 1223-1231
  7. Scalbert A. 1993. Polyphenolic phenomena. Paris, France, INRA.
  8. Briggs KJ, Fry SC. 1987. Phenolic cross-linking in the cell wall. In Plant Physiology. Cosgrove DJ, Knievel DP, eds. American Society of Plant Physiologists, Rockville, MD.p 46-57
  9. Ng A, Harvey AJ, Parker ML, Smith AC, Waldron KW.1998. Effect of oxidative coupling on the thermal stability of texture and cell wall chemistry of beet root (Beta vul-garis). J Sci Food Agric 76: 3365-3370 https://doi.org/10.1002/(SICI)1097-0010(199804)76:4<617::AID-JSFA20>3.0.CO;2-5
  10. Grabber JH, Ralph J, Hatfield RD. 2000. Cross linking of maize walls by ferulate dimerization and incorporation into lignin. J Agric Food Chem 48: 6106-6113 https://doi.org/10.1021/jf0006978
  11. Waldron KW, Ng A, Parker, ML, Parr AJ. 1997. Ferulic acid dehydrodimers in the cell walls of Beta vulgaris and their possible role in texture. J Sci Food Agric 74: 221-228 https://doi.org/10.1002/(SICI)1097-0010(199706)74:2<221::AID-JSFA792>3.0.CO;2-Q
  12. Shirley BW. 1998. Flavonoids in seeds and grains: physiological function, agronomic importance and the genetic of biosynthesis. Seed Sci Res 8: 415-422 https://doi.org/10.1017/S0960258500004372
  13. Kato Y, Nevins DJ. 1985. Isolation and identification of 2-O-(5'-O-trans-feruoyl-β-L-arabinofuranosyl)-(1→3)-O-β-D-xylopyranosyl-(1→4)-D-xylopyranose as a component of Zea shoot cell walls. Carbohydr Res 137: 139-150 https://doi.org/10.1016/0008-6215(85)85155-7
  14. Garcia-Conesa MT, Plumb GW, Kroon PA, Wallace G, Williamson G. 1997a. Antioxidant properties of ferulic acid dimers. Redox Rep 3: 239-244 https://doi.org/10.1080/13510002.1997.11747116
  15. Pussayanawin V, Wetzel DL, Fulcher RG. 1988. Fluorescence detection and measurement of ferulic acid in wheat milling fractions by microscopy and HPLC. J Agric Food Chem 36: 515-520 https://doi.org/10.1021/jf00081a027
  16. Arnason JT, Gale J, Conilh de Beyssac B, Sen A, Miller SS, Philogen BJ, Lambert JDH, Fulcher RG, Serratos A, Mihm J. 1992. Role of phenolics in resistance of maize grain to the stored grain insects Prostephanus truncatus and Sitophilus zeamais. J Stored Prod 28: 119-126 https://doi.org/10.1016/0022-474X(92)90019-M
  17. Hatfield RD. 1993. Cell wall polysaccharide interactions and degradability. In Forage Cell Wall Structure and Digestibility. Jung HG, Buxton DR, Hatfield RD Ralph J, eds. Madison WI, ASA-CSSA-SSSA, P 286-314
  18. Beninger CW, Hosfield GL, Basset MJ. 1999. Flavonoid composition of three genotypes of dry beans (Phaseolus vulgaris) differing in seedcoat coloring. J Am Soc Hort Sci 124: 514-518
  19. Beninger CW, Hosfield GL, Nair MG. 1998. Flavonol glycosides from seed coat of a new Manteca type dry beans (Phaseolus vulgaris L.). J Agric Food Chem 46: 2906-2910 https://doi.org/10.1021/jf9801522
  20. Feenstra WJ. 1960. Biochemical aspects of seedcoat colour inheritance in Phaseolus vulgaris L. Meded Landbouwhogesch Wageningen 60: 1-53
  21. Stanton WR, Francis BJ. 1966. Ecological significance of anthocyanin in the seed coats of the Phaseoleae. Nature 211: 970-971 https://doi.org/10.1038/211970a0
  22. Takeoka GR, Dao LT, Full GH, Wong RY, Harden LE, Edwards RH, Berrios JJ. 1997. Characterization of black beans (Phaseolus vulgaris) anthocyanins. J Agric Food Chem 45: 3395-3400 https://doi.org/10.1021/jf970264d
  23. Marquardt RR, Ward AT, Evans LE. 1978. Comparative properties of tannin-free and tannin containing cultivars of faba beans (Vicia faba). Can J Plant Sci 58:753 https://doi.org/10.4141/cjps78-111
  24. Price ML, Hagerman AE, Butler G. 1980. Tannin content of cowpeas, pigeon peas, and mung beans. J Agric Food Chem 28: 459-461 https://doi.org/10.1021/jf60228a047
  25. Yu J, Vasanthan T, Temelli F. 2001. Analysis of phenolic acids in barley by high-performance liquid chromatography. J Agric Food Chem 49: 4352-4358 https://doi.org/10.1021/jf0013407
  26. Van-Sumere CF, Cottenie J, De Greef, Kint J. 1972. Biochemical studies in relation to the possible germination regulatory role of naturally occurring coumarin and phenolics. Recent Adv Phytochem 4: 165-221
  27. Hernanz D, Nunez V, Sancho AI, Faulds CB, Williamson G, Bartolome B, Gomez-Cordoves C. 2001. Hydroxycinnamic acids and ferulic acid dehydrodimers in barley and processed barley. J Agric Food Chem 49: 4884-4888 https://doi.org/10.1021/jf010530u
  28. Fincher GB. 1976. Ferulic acid in barley cell walls: a fluorescence study. J Inst Brew 82: 347-349 https://doi.org/10.1002/j.2050-0416.1975.tb06961.x
  29. Renger A, Steinhart H. 2000. Ferulic acid dehydrodimers as structural elements in cereal dietary fibre. Eur Food Res Technol 211: 422-428 https://doi.org/10.1007/s002170000201
  30. Siebert KJ, Troukhanova NV, Lynn PY. 1996. Nature of polyphenol-protein interactions. J Agric Food Chem 44: 80-85 https://doi.org/10.1021/jf9502459
  31. McMurrough I, Madigan D, Smyth MR. 1996. Semipreparative chromatographic procedure for the isolation of dimeric and trimeric proanthocyanidins from barley. J Agric Food Chem 44: 1731-1735 https://doi.org/10.1021/jf960139m
  32. Durkee AB. 1977. Polyphenols of the bran-aleurone fraction of buckwheat seed (Fagopyrum sagitatum Gilib). J Agric Food Chem 25: 286-287 https://doi.org/10.1021/jf60210a045
  33. Oomah BD, Mazza G. 1996a. Flavonoids and antioxidative activities in buckwheat. J Agric Food Chem 44: 1746-1750 https://doi.org/10.1021/jf9508357
  34. Dietrych-Szostak D, Oleszek W. 1999. Effect of processing on the flavonoid content in buckwheat (Fagopyrum esculentum Moench) grain. J Agric Food Chem 47: 4384-4387 https://doi.org/10.1021/jf990121m
  35. Watanabe M. 1998. Catechins as antioxidants from buckwheat (Fagopyrum esculentum Moench) groats. J Agric Food Chem 46: 839-845 https://doi.org/10.1021/jf9707546
  36. Sosulski FW, Krygier K, Hogge L. 1982. Free, esterified and insoluble-bound phenolic acids. 3. Composition of phenolic acids in cereal and potato flours. J Agric Food Chem 30: 337-340 https://doi.org/10.1021/jf00110a030
  37. Sen A, Bergvinson D, Miller SS, Atkinson J, Fulcher RG, Arnason JT. 1994. Distribution and microchemical detection of phenolic acids, flavonoids, and phenolic acid amides in maize kernels. J Agric Food Chem 42: 1879-1883 https://doi.org/10.1021/jf00045a009
  38. Antrim RL, Harris DW. 1977. Method of treatment of corn hulls. US Patent 4 038 481
  39. Hosny M, Rosazza JPN. 1997. Structures of ferulic acid gly-coside esters in corn hulls. J Nat Prod 60: 219-222 https://doi.org/10.1021/np9605908
  40. Norton RA. 1995. Quantitation of steryl ferulate and p-coumarate esters from corn and rice. Lipids 30: 269-274 https://doi.org/10.1007/BF02537832
  41. Norton RA. 1994. Isolation and identification of steryl cinnamic acid derivatives from corn bran. Cereal Chem 71: 111-117
  42. Baraud J, Genevois L, Panart JP. 1974. Anthocyanins of corn. J Agric Trop Bot Appl 11: 55-59
  43. Nakatani N, Fukuda H, Fuwa H. 1979. Studies on naturally occurring pigments. Major anthocyanin of Bolivian purple corn (Zea mays L.). Agric Food Chem 43: 389-391
  44. Styles ED, Ceska O. 1977. The genetic control of flavonoid synthesis in maize. Can J Genet Cytol 19: 289-302 https://doi.org/10.1139/g77-032
  45. Durkee AB, Thivierge PA. 1977. Ferulic acid and other phenolics in oat seeds (Avena sativa L. var. Hinoat). J Food Sci 42: 551-552 https://doi.org/10.1111/j.1365-2621.1977.tb01547.x
  46. Collins FW. 1986. Oats phenolics: structure, occurrence and function. In Oats: Chemistry and Technology. Webster FH, Ed. St Paul, MN, American Association of Cereal Chemists, p 227-295
  47. Xing YM, White PJ. 1997. Identification and function of antioxidants from oat groats and hulls. J Am Oil Chem Soc 74: 303-307 https://doi.org/10.1007/s11746-997-0141-x
  48. Collins FW. 1989. Oat phenolics: avenanthramides, novel substituted N-cinnamoylanthranilate alkaloids from oat groats and hulls. J Agric Food Chem 37: 60-66 https://doi.org/10.1021/jf00085a015
  49. McKeehen JD, Busch RH, Fulcher RG. 1999. Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to Fusarium resistance. J Agric Food Chem 47: 1476-1482 https://doi.org/10.1021/jf980896f
  50. Faurot A, Saulnier L, Berot S, Popineau Y, Petit M, Rouau X, Thibault JF. 1995. Large scale isolation of water-soluble pentosans from wheat flour. Lebensm-Wiss Technol 28: 436-441 https://doi.org/10.1016/0023-6438(95)90028-4
  51. Seitz LM. 1989. Stanol and sterol esters of ferulic and pcoumaric acids in wheat, corn, rye, and triticale. J Agric Food Chem 37: 662-667 https://doi.org/10.1021/jf00087a019
  52. Herrmann K. 1989. Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. CRC Crit Rev Food Sci Nutr 28: 315-347 https://doi.org/10.1080/10408398909527504
  53. Hakala P, Lampi A-M, Ollilainen V, Werner U, Murkovic M, Wahala K, Karkola S, Piironen V. 2002. Steryl phenolic acid esters. in cereals and their milling fractions. J Agric Food Chem 50: 5300-5307 https://doi.org/10.1021/jf025637b
  54. Iiyama K, Bach-Tuyet Lam T, Stone BA. 1984. Covalent cross-links in the cell wall. Plant Physiol 104: 315-320
  55. Piot O, Autran J-C, Manfait M. 2000. Spatial distribution of protein and phenolic constituents in wheat grain as probed by confocal Raman microspectroscopy. J Cereal Sci 32: 57-71 https://doi.org/10.1006/jcrs.2000.0314
  56. Abdel-Aal E-SM, Hucl P, Sosulski FW, Graf R, Gillot C, Pietrzak L. 2001. Screening Spring wheat for midge resistance in relation to ferulic acid. J Agric Food Chem 49: 3559-3556 https://doi.org/10.1021/jf010027h
  57. Irving DW, Fulcher RG, Bean MM, Saunders RM. 1989. Differentiation of wheat based on fluorescence, hardness and protein. Cereal Chem 66: 471-477
  58. Wenkert E, Loeser EM, Mahapatra SN, Schenker F, Wilson EM. 1964. Wheat bran phenols. J Org Chem 29: 435-439 https://doi.org/10.1021/jo01025a046
  59. Musehold J. 1978. Dunnschitchromatographische Trennung von 5-alkyl-resorcinhomologen aus Getreidekornern (Thin-layer chromatographic separation of 5-alkyl-resorcinol homologs from cereals). Z Pflanzenzuecht 80: 326-329
  60. Feng Y, McDonald CE. 1989. Comparison of flavonoids in four classes of wheat. Cereal Chem 66: 516-518
  61. Hertog MGL, van Poppel G, Verhoeven D. 1997. Potentially anticarcinogenic secondary metabolites from fruit and vegetables. In Phytochemistry of Fruit and Vegetables, Proceedings of the Phytochemical Society of Europe Vol. 41, Tomas-Barberan FA, Robins RJ, eds. Oxford, UK. Claredon Press, p 313-330
  62. Amiot MJ, Fleuriet A, Cheynier V, Nicolas J. 1997. Phenolic compounds and oxidative mechanisms in fruit and vegetables. In Phytochemistry of Fruit and Vegetables, Proceedings of the Phytochemical Society of Europe Vol. 41. Tomas-Barberan FA, Robins RJ, eds. Oxford, UK. Claredon Press, p 51-86
  63. Guyot S, Marnet N, Laraba D, Sanoner P, Drilleau J-F. 1998. Reversed-phase HPLC and characterization of the four main classes of phenolic compounds in different tissue zones of french cider apple variety (Malus domestica var. Kermerrien). J Agric Food Chem 46: 1698-1705 https://doi.org/10.1021/jf970832p
  64. Lu Y, Foo LY. 1997. Identification and quantification of major polyphenols of apple pomace. Food Chem 59: 187-194 https://doi.org/10.1016/S0308-8146(96)00287-7
  65. Gorinstein S, Zachwieja Z, Folta M, Barton H, Piotrowicz J, Zemser M, Weisz M, Trakhtenberg S, Martin-Belloso O.2001. Comparative contents of dietary fibers, total phenolics, and minerals in persimmons and apples. J Agric Food Chem 49: 952-957 https://doi.org/10.1021/jf000947k
  66. Sanoner P, Guyot S, Marnet N, Molle D, Drilleau J-F. 1999. Polyphenol profiles of French cider apple varieties (Malus dornestica sp.). J Agric Food Chem 47: 4847-4853 https://doi.org/10.1021/jf990563y
  67. Van der Sluis AA, Dekker M, de Jager A, Jongen WMF.2001.Activity and concentration of polyphenolic antioxidants in apple: effect of cultivar, harvest year, and storage conditions. J Agric Food Chem 49: 3606-3613 https://doi.org/10.1021/jf001493u
  68. Alonso-Salcer RM, Korta E, Barranco A, Berrueta LA, Gallo B, Vicente F. 2001. Determination of polyphenolic profiles of Basque cider apple varieties using accelerated solvent extraction. J Agric Food Chem 49: 3761-3767 https://doi.org/10.1021/jf010021s
  69. Lommen A, Godejohann M, Venema DP, Hollman PCH, Spraul M. 2000. Application of directly coupled HPLC-NMR-MS to the identification and confirmation of quercetin glycosides and phloretin glycosides in apple peel. Anal Chem 72: 1793-1797 https://doi.org/10.1021/ac9912303
  70. Lea AGH. 1990. Bitterness and astringency: the procyanidins of fermented apple ciders. In Bitterness in Food and Beverages. Roussef RL, ed. Elsevier, Oxford, UK. p 123-143
  71. Guyot S, Marnet N, Drilleau JE 2001. Thiolysis-HPLC characterization of apple procyanidins covering large range ot polymerization states. J Agric Food Chem 49: 14-20 https://doi.org/10.1021/jf000814z
  72. Smith MAL, Marley KA, Seigler D, Singletary KW, Meline B. 2000. Bioactive properties of wild bluberry fruits. J Food Sci 65: 352-356 https://doi.org/10.1111/j.1365-2621.2000.tb16006.x
  73. Mazza G, Miniati E. 1993. Anthocyanins in fruits, vegetables, and grains. Boca Raton, FL, CRC Press
  74. Kalt W, McDonald JE, Donner H. 2000. Anthocyanins, phenolics and antioxidant capacity of processed lowbush blueberry products. J Food Sci 65: 390-393 https://doi.org/10.1111/j.1365-2621.2000.tb16013.x
  75. Gu L, Kelm M, Hammerstone JF, Beecher G, Cunningham D, Vannozzi S, Prior RL. 2002. Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normalphase HPLC-MS fluorescent detection method. J Agric Food Chem 50: 4852-4860 https://doi.org/10.1021/jf020214v
  76. Prior RL, Lazarus SA, Cao G, Muccitelli H, Hammerstone JE 2001. Identification of procyanidins and anthocyanins in bluberries and cranberries (Vaccinium Spp.) using high-performance liquid chromatography/mass spectrometry. J Agric Food Chem 49: 1270-1276 https://doi.org/10.1021/jf001211q
  77. Prior RL, Lazarus SA, Cao G, Muccitelli H, Hammerstone JE 2001. Identification of procyanidins and anthocyanins in bluberries and cranberries (Vaccinium Spp.) using high-performance liquid chromatography/mass spectrometry. J Agric Food Chem 49: 1270-1276 https://doi.org/10.1002/jsfa.2740570312
  78. Kanes K, Tisserat B, Berhow M, Vandercook C. 1992. Phenolic composition of various tissues in Rutaceae species. Phytochemistry 31: 967-974 https://doi.org/10.1016/0031-9422(92)80049-K
  79. Gil-Izquierdo A, Gil MI, Ferreres F. 2002. Effect of processing techniques at industrial scale on orange juice antioxidant and beneficial health compounds. J Agric Food Chem 50: 5107-5114 https://doi.org/10.1021/jf020162+
  80. Mouly PP, Gaydou EM, Faure R, Estienne JM. 1997. Blood orange juice authentication using cinnarnic acid derivatives. Variety differentiations with flavanone glycoside content. J Agric Food Chem 45: 373-377 https://doi.org/10.1021/jf9605097
  81. Ortuno AM, Arcas MC, Botia JM, Fuster MD, Del Rio JA. 2002. Increasing resistance against Phytophora citrophthora in tangelo Nova fruits by modulating polymethoxyflavones levels. J Agric Food Chem 50: 2836-2839 https://doi.org/10.1021/jf011382a
  82. Mizuno M, Iinuma M, Ohara M, Tanaka T, Iwasama M. 1991. Chematoxomy on the genus Citrus based on polymethoxyflavones. Chem Pharm Bull 39: 945-949 https://doi.org/10.1248/cpb.39.945
  83. Venkataraman K. 1975. Flavones. In The Flavonoids. Harborne JB, Mabry TJ, Mabry H. eds. London, UK, Chapman and Hall, p 267
  84. Kawaii S, Tomono Y, Katase E, Ogawa K, Nonomura-Nakano M, Nesumi H, Yoshida T, Sugiura M, Yano M. 2001. Quantitative study of fruit flavonoids in Citrus hybrids of King (C. nobilis) and Mukaku Kishu (c. kinokuni). J Agric Food Chem 49: 3982-3986 https://doi.org/10.1021/jf0100292
  85. Marin FR, Del Rio JA. 2001. Selection of hybrids and edible Citrus species with high content in the diosmin functional compound. Modulating effect of plant growth regulators on contents. J Agric Food Chem 49: 3356-3362 https://doi.org/10.1021/jf010052n
  86. Benavente-Garcia O, Castillo J, Marin FR, Ortuno A, Del Rio JA. 1997. Uses and properties of citrus flavonoids. J Agric Food Chem 45: 4505-4515 https://doi.org/10.1021/jf970373s
  87. Kandil FE, Smith MAL, Rogers RB, Pepin M-F, Song LL, Pezzuto JM, Seigler DS. 2002. Composition of a chemopreventive proanthocyanidin-rich fraction from cranberry fruits responsible for the inhibition of 12-O-tetradecanoyl phorbol-13-acetate (TPA)- induced ornithine dacarboxylase (ODC) activity. J Agric Food Chem 50: 1063-1069 https://doi.org/10.1021/jf011136z
  88. ZuoY, Wang C, Zhan J. 2002. Separation, characterization, and quantification of benzoic and phenolic antioxidants in american cranberry fruit by GC-MS. J Agric Food Chem 50: 3789-3794 https://doi.org/10.1021/jf020055f
  89. Chen H, Zuo Y, Deng Y. 2001. Separation and determination of flavonoids and other phenolic compounds in cranberry juice by high-performance liquid chromatography. J Chromatogr 913: 387-395 https://doi.org/10.1016/S0021-9673(00)01030-X
  90. Wang SY, Stretch AL. 2001 Antioxidant capacity in cranberry is influenced by cultivar and storage temperature. J Agric Food Chem 49: 969-974 https://doi.org/10.1021/jf001206m
  91. Souquet JM, Labarbe B, Le Guerneve C, Cheynier V, Moutounet M 2000. Phenolic composition of grape stems. J Agric Food Chem 48: 1076-1080 https://doi.org/10.1021/jf991171u
  92. Labarbe B, Cheynier V, Brossaud F, Souquet J-M, Moutounet M. 1999. Quantitative fractionation of grape proanthocyanidins according to their degree of polymerization. J Agric Food Chem 47: 2719-2723 https://doi.org/10.1021/jf990029q
  93. Cheynier V, Rigaud J. 1986. HPLC separation and characterization of flavonols in the skin of Vitis vinifera var. Cinsault. Am J Enol Vitic 37: 248-252
  94. Versari A, Parpinello GP, Tornielli GB, Ferrarini R, Giulivo C. 2001. Stilbene compounds and stilbene synthase expression during ripening, wilting and UV treatment in grape cv. Corvina. J Agric Food Chem 49: 5531-5536 https://doi.org/10.1021/jf010672o
  95. Talcott ST, Howard LR. 1999a. Chemical and sensory quality of processed carrot puree as influnced by stressinduced phenolic compounds. J Agric Food Chem 47: 1362-1366 https://doi.org/10.1021/jf000404a
  96. Talcott ST, Howard LR. 1999a. Chemical and sensory quality of processed carrot puree as influnced by stressinduced phenolic compounds. J Agric Food Chem 47: 1362-1366 https://doi.org/10.1021/jf981135f
  97. Babic J, Amiot MJ, Nguyen-The C, Aubert S. 1993. Changes in phenolic content in fresh ready-to-use shredded carrots during storage. J Food Sci 58: 351-355 https://doi.org/10.1111/j.1365-2621.1993.tb04273.x
  98. Alasalvar C, Grigor JM, Zhang D, Quantick PC, Shahidi F. 2002. Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. J Agric Food Chem 50: 2039-2041 https://doi.org/10.1021/jf010769a
  99. Parr AJ, Ng A, Waldron KW. 1997. Ester linked phenolic components of carrot cell walls. J Agric Food Chem 45: 2468-2471 https://doi.org/10.1021/jf960982k
  100. Ceska O, Chaudhary SK, Warrington PJ, and AshwoodSmith MJ. 1986. Furanocoumarins in the cultivated carrot, Daucus carota. Phytochemistry 25: 81-83 https://doi.org/10.1016/S0031-9422(00)94506-0
  101. Talcott ST, Howard LR. 1999. Determination and distribution of 6-methoxymellein in fresh and processed carrot puree by rapid spectrophotometric assay. J Agric Food Chem 47: 3237-3242 https://doi.org/10.1021/jf990288f
  102. Ferreres F, Gil MI, Castaner M, Tomas-Barberan FA.1997. Phenolic metabolites in red pigmented lettuce (Lactuca sativa). Changes with minimal processing and cold storage. J Agric Food Chem 45: 4249-4254 https://doi.org/10.1021/jf970399j
  103. Cantos E, Espin JC, Tomas-Barberan FA. 2001a. Effect of wounding on phenolic enzymes in six minimally processed lettuce cultivars upon storage. J Agric Food Chem 49: 322-330 https://doi.org/10.1021/jf000644q
  104. Winter M, Herrmann K. 1986. Esters and glucosides of hydroxycinnamic acids in vegetables. J Agric Food Chem 34: 616-620 https://doi.org/10.1021/jf00070a007
  105. Bilyk, A, Sapers GM. 1985. Distribution of quercetin and kaempferol in lettuce, kale, chive, garlic chive, leek, horseradish, and red cabbage tissue. J Agric Food Chem 33: 226-228 https://doi.org/10.1021/jf00062a017
  106. DuPont MS, Mondin Z, Williamson G, Price KR. 2000.Effect of variety, processing and storage on the flavonoid glycoside content and composition of lettuce and endive. J Agric Food Chem 48: 3957-3964 https://doi.org/10.1021/jf0002387
  107. Crozier A, Lean MEJ, McDonald MS, Black C. 1997. Quantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce, and celery. J Agric Food Chem 45: 590-595 https://doi.org/10.1021/jf960339y
  108. Hertog MGL, Hollman PCH, Katan MB. 1992a. Content of potentially anticancerogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in The Netherlands. J Agric Food Chem 40: 2379-2383 https://doi.org/10.1021/jf00024a011
  109. Donner H, Gao L, Mazza G. 1997. Separation and characterization of simple and malonylated anthocyanins in red onions, Allium cepa L. Food Res Int 30: 637-643 https://doi.org/10.1016/S0963-9969(98)00011-8
  110. Lee Y, Howard LR, Villalon B. 1995. Flavonoids and antioxidant activity of fresh pepper (Capsicum annuum) cultivars. J Food Sci 60: 473-476 https://doi.org/10.1111/j.1365-2621.1995.tb09806.x
  111. Kirschbaum-Titze P, Hiepler C, Mueller-Seitz E, Petz M.2002a. Pungency in paprika (Capsicum annuum). 1. Decrease of capsaicinoid content following cellular disruption. J Agric Food Chem 50: 1260-1263 https://doi.org/10.1021/jf010527a
  112. Estrada B, Bernal MA, Diaz J, Pomar F, Merino F. 2002. Capsaicinoids in vegetative organs of Capsicum annuum L. in relation to fruiting. J Agric Food Chem 50: 1188-1191 https://doi.org/10.1021/jf011270j
  113. Suzuki T, Iwai K. 1984. Constituents of red pepper species: chemistry, biochemistry, pharmacology, and food science of the pungent principle of Capsicum species. In The Alkaloids. Brossi, A, ed. Academic Press Inc., Orlando, FL.Vol 23, p 227-299
  114. Iwai K, Suzuki T, Fujiwake H. 1979. Formation and accumulation of pungent principle of hot pepper fruits, capsaicin and its analogues, in Capsicum annuum val. annuum cv. Karayatsubusa at different stages after flowering. Agric Food Chem 43: 2493-2498 https://doi.org/10.1021/jf00057a032
  115. Estrada B, Bernal MA, Diaz J, Pomar F, Merino F. 2000.Fruit development in Capsicum annuum. Changes in capsaicin, lignin, free phenolics, and peroxidase patterns. J Agric Food Chem 48: 6234-6239 https://doi.org/10.1021/jf000190x
  116. Iorizzi M, Lanzotti V, De Marino S, Zollo F, Blanco-Molina M, Macho A, Munoz, E. 2001. New glycosides from Capsicum annuum L. var. Acuminatum. Isolation, structure determination, and biological activity. J Agric Food Chem 49: 2022-2029 https://doi.org/10.1021/jf0013454
  117. Iorizzi M, Lanzotti V, De Marino S, Zollo F, Blanco-Molina M, Macho A, Munoz, E. 2001. New glycosides from Capsicum annuum L. var. Acuminatum. Isolation, structure determination, and biological activity. J Agric Food Chem 49: 2022-2029 https://doi.org/10.1021/jf020507o
  118. Wagner H, Maurer I; Farkas L, Strelisky J. 1977. Synthese von Polyhydroxy-Flavonol methylathern mit potentieller cytotoxischer Wirksamkeit I. Synthese von Quercetagetin-und Gossypetin-dimethylathern zum Strukiurbeweis neuer Flavonole aus Parthenium -Chrysosplenium-, Larrea- und Spinacia-Arten. Tetrahedron 33: 1405-1409 https://doi.org/10.1016/0040-4020(77)84092-1
  119. Stewart AJ, Bozonnet S, Mullen W, Jenkins GI, Lean, MEJ, Crozier A. 2000. Occurrence of flavonols in tomatoes and tomato-based products. J Agric Food Chem 48: 2663-2669 https://doi.org/10.1021/jf000070p
  120. Wettasinghe M, Shahidi F, Amarowicz R, Aboud-Zaid MM.2001. Phenolic acids in defatted seeds of borage (Borago officinalis L.). Food Chem 75: 49-56 https://doi.org/10.1016/S0308-8146(01)00182-0
  121. Zadernowski R, Naczk M, Nowak-Polakowska H. 2002.Phenolic acids of borage (Borago officinalis L.) and evening primrose (Oenothera biennis L.). J Am Oil Chem Soc 79: 335-338 https://doi.org/10.1007/s11746-002-0484-8
  122. Naczk M, Amarowicz R, Sullivan A, Shahidi F. 1998a. Current research developments on polyphenolics of rapeseed/canola: a review. Food Chem 62: 489-502 https://doi.org/10.1016/S0308-8146(97)00198-2
  123. Naczk M, Shahidi F. 1992. Phenolic constituents of rapeseed. In Plant polyphenols: Synthesis, Properties, Significance. Hemingway RW, Laks PE, eds. New York, NY, Plenum Press, p 895-910
  124. Pokorny J, Reblova Z.1995. Sinapines and other phenolics of Brasicaceae seeds. Potrav Vedy 13: 155-168
  125. Krygier K, Sosulski FW, Hogge L. 1982. Free, esterified and insoluble phenolic acids. 2. Composition of phenolic acids in rapeseed flour and hulls. J Agric Food Chem 30: 334-336 https://doi.org/10.1021/jf00110a029
  126. Naczk M, Amarowicz R, Pink D, Shahidi F. 2000. Insoluble condensed tannins of canola/rapeseed. J Agric Food Chem 48: 1758-1762 https://doi.org/10.1021/jf9908401
  127. Oomah BD, Kenaschuk EO, Mazza G. 1995. Phenolic acids in flaxseed. J Agric Food Chem 43: 2016-2019 https://doi.org/10.1021/jf00056a011
  128. Dabrowski K, Sosulski F. 1984. Composition of free and hydrolyzable phenolic acids in defatted flours of ten oilseeds. J Agric Food Chem 32: 128-130 https://doi.org/10.1021/jf00121a032
  129. Oomah BD, Mazza G, Kenaschuk EO. 1996b. Flavonoid content of flaxseed. Influence of cultivar and environment. Euphytica 90: 163-167 https://doi.org/10.1007/BF00023854
  130. Ibraham RK, Shaw M.1970. Phenolic constituents of the oil flax (Linum usitatissimum). Phytochemistry 9: 1855-1858 https://doi.org/10.1016/S0031-9422(00)85604-6
  131. Mazur WM, Fotsis T, Oajala S, Salakka A, Adlecreutz H. 1996. Isotope dilution gas chromatographic-mass spectrometric method for determinantion of isoflavonoids, coumestrol and lignans in food samples. Anal Biochem 233: 169-180 https://doi.org/10.1006/abio.1996.0025
  132. Meagher LP, Beecher GR, Flanagan VP, Li BW. 1999. Isolation and characterization of the lignans, isolariciresinol and pinoresinol, in flaxseed meal. J Agric Food Chem 47: 3173-3180 https://doi.org/10.1021/jf981359y
  133. Lu F, Foo LY. 1995. Phenolic antioxidant components of evening primrose. In Nutrition, Lipids, Health and Disease.Niki E, Packer L, eds. Champaign, IL, AOCS Press, p 86-95
  134. Shahidi F, Amarowicz R, Abu-Gharbia H-A, Shehata, AAJ. 1997b.Endogenous antioxidants and stability of sesame oil as affected by processing and storage. J Am Oil Chem Soc 74: 143-148 https://doi.org/10.1007/s11746-997-0159-0
  135. Wettasinghe M, Shahidi F, Amarowicz R. 2002. Identification and quantification of low molecular weight phenolic antioxidants in seeds of evening primrose (Oenethera biennis L.). J Agric Food Chem 50: 1267-1271 https://doi.org/10.1021/jf010526i
  136. Hamburger M, Riese U, Graf H, Melzig MF, Ciesielski S, Baumann D, Dittman K, Wegner C. 2002. Constituents in evening primrose oil with radical scavenging, cyglooxygenase, and neutrophil elastase inhibitory activities. J Agric Food Chem 50: 5533-5538 https://doi.org/10.1021/jf025581l
  137. Angerosa F, d'Alessandro N, Konstantinou P, Di Giacinto L. 1995. GC-MS evaluation of phenolic compounds in virgin olive oil. J Agric Food Chem 43: 1802-1807 https://doi.org/10.1021/jf00055a010
  138. Panizzi L, Scarpati ML, Oriente EG. 1960. Structure of oleuropein, bitter glycoside with hypotensive action of olive oil. Note II. Gazz Chim Ital 90: 1449-1485
  139. Bastoni L, Bianco A, Piccioni F, Uccella N. 2001. Biophenolic profile in olives by nuclear magnetic resonance. Food Chem 73: 145-151 https://doi.org/10.1016/S0308-8146(00)00250-8
  140. Bianco A, Coccioli F, Guiso M, Marra C. 2001. The occurrence in olive oil of a new class of phenolic compounds: hydroxy-isochromans. Food Chem 77: 405-411 https://doi.org/10.1016/S0308-8146(01)00366-1
  141. Romani A, Mulinacci N, Pinalli P, Vincieri F, Cimato A.1999. Polyphenolic content in five Tuscany cultivars of Olea europaea L. J Agric Food Chem 47: 964-967 https://doi.org/10.1021/jf980264t
  142. Vlahov G. 1992. Flavonoids in three olive (Olea europea) fruit varieties during maturation. J Food Sci 58: 157-159 https://doi.org/10.1002/jsfa.2740580128
  143. Fukuda Y, Osawa T, Kawakishi S, Namiki M. 1994. Chemistry of lignan antioxidants in sesame seed and oil. In Food Phytochemicals for Cancer Prevention II. Teas, Spices and Herbs. Ho C-T, Osawa T, Huang M-T, Rosen RT, eds. ACS Symposium Series 547, Washington, DC, American Chemical Society, p 264-274
  144. Nagata M, Osawa T, Namiki M, Fukuda Y. 1987. Stereochemical structure of antioxidative bisepoxylignans, sesaminol and its isomers, transformed from sesamolin. Agric Food Chem 51: 1285-1289
  145. Katsuzaki H, Osawa T, Kawakishi S. 1994. Chemistry and antiosidative activity of lignan glucosides in sesame seed. In Food Phytochemicals for Cancer Prevention II. Teas, Spices and Herbs. Ho C-T, Osawa T, Huang M-T, Rosen RT, eds. ACS Symposium Series 547, Washington DC, American Chemical Society, p 275-280
  146. Fleury Y, Welti DH, Philippossian G, Magnolato D. 1991. Soybean (manoyl) isoflavones. Characterization and antioxidant properties. In Phenolic Compounds in Food and their Effects on Health II. Antioxidants and CancerPrevention. Huang M-T, Ho C-T, Lee CY, eds. ACS Symposium Series 507, Washington, DC, American Chemical Society, p 98-113
  147. Hirano T, Gotoh M, Oka K.1994. Natural flavonoids and lignans are potent cytostatic agents against human leukimic HL-60 cells. Life Sci 146: 294-306
  148. Wang C, Murphy P. 1994. Isoflavone composition of American and Japanese soybean in Iowa: effects of variety, crop year, and location. J Agric Food Chem 42: 1674-1677 https://doi.org/10.1021/jf00044a017
  149. Baue SE, Carter CH, Ehrlich KC, Cleveland TE. 2000. Induction of the soybean phytoalexins coumestrol and glyceollin by Aspergillus. J Agric Food Chem 48: 2167-2172 https://doi.org/10.1021/jf9912809
  150. Makris D, Rossiter JT. 2001. Domestic processing of onion bulbs (Allium cepa) and asparagus spears (Asparagus off-icinalis): effect on flavonol content and antioxidant status. J Agric Food Chem 49: 3216-3222 https://doi.org/10.1021/jf001497z
  151. Makris D, Rossiter JT. 2001. Domestic processing of onion bulbs (Allium cepa) and asparagus spears (Asparagus off-icinalis): effect on flavonol content and antioxidant status. J Agric Food Chem 49: 3216-3222 https://doi.org/10.1021/jf011426f
  152. Zobel AM. 1997. Coumarins in fruits and vegetables. In Phytochemistry of Fruit and Vegetables. Tomas-Barberan FA, Robins RJ, eds. Clanderon Press, Oxford, UK. p 173-204
  153. Bavaresco L, Pettegolli D, Cantu E, Fregoni M, Chiusa G, Trevisan M. 1997. Elicitation and accumulation of stilbene phytoalexin in grapevine berries infected by Botris cinerea. Vitis 36: 77-83
  154. Lafuente MT, Cantwell M, Yang SF, Rubatzky V. 1989. Isocoumarin content of carrots as influenced by ethylene concentration, storage temperature and stress conditions. Acta Hort 258: 523-534
  155. Higuchi WI, Ho NF, Park JY, Komiya I. 1981. Rate-limiting steps and factors in drug absorption. In Drug Absorption, Prescott LF, Nimno WS, eds. ADIS Press, New York, NY, USA. p 35-60
  156. Higuchi WI, Ho NF, Park JY, Komiya I. 1981. Rate-limiting steps and factors in drug absorption. In Drug Absorption, Prescott LF, Nimno WS, eds. ADIS Press, New York, NY, USA. p 35-60 https://doi.org/10.1021/jf60163a004
  157. Singleton VL. 1981. Naturally occurring food toxicants: phenolic substances of plant origin common in foods. Adv Food Res 27: 149-242 https://doi.org/10.1016/S0065-2628(08)60299-2
  158. Galati G, Sabzevari O, Wilson JX, O'Brien PJ. 2002. Proxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicol 177: 91-104 https://doi.org/10.1016/S0300-483X(02)00198-1
  159. Galati G, Teng S, Moridani MY, Chan TS, O'Brien PJ.2000. Cancer prevention and apoptosis mechanisms induced by dietary polyphenolics. Drug Metab Drug Interac 17: 311-349
  160. Skibola CF, Smith MT. 1999. Potential health impacts of excessive flavonoid intake. Free Radical Biol Med 29: 375-383 https://doi.org/10.1016/S0891-5849(00)00304-X
  161. Marinelli VK, Zanelli U, Nuti Ronchi V, Pini D, Salvadori P.1989. Toxicity of 6- methoxymellin to carrot cells suspension cultures. Votr Plfanzenz 15: 23-26
  162. Marinelli VK, Zanelli U, Nuti Ronchi V, Pini D, Salvadori P.1989. Toxicity of 6- methoxymellin to carrot cells suspension cultures. Votr Plfanzenz 15: 23-26 https://doi.org/10.1021/jf011066w
  163. Lake BG. 1999. Coumarin metabolism, toxicity and carcinogenicity: relevance for human risk assessment. Food Chem Toxicol 37: 423-453 https://doi.org/10.1016/S0278-6915(99)00010-1
  164. Mazaki M, Ishii T, Uyeta, M. 1982. Mutagenicity of hydrolysates of citrus fruit juices. Mutat Res 113: 173-215
  165. Buening MK, Chang RL, Huang M-T, Fortner JG, Wood AW, Conney AH. 1981. Activation and inhibition of benzo [a]pyrene and aflatoxin B1 metabolism in human liver microsomes by naturally occuring flavonoids. Cancer Res 41: 67-72
  166. Delaney B, Phillips K, Vasquez C, Wilson A, Cox D, Wang H-B, Manthey J. 2002. Genetic toxicity of standardized mixture of citrus polymethoxylated flavones. Food Chem Toxicol 40: 617-624 https://doi.org/10.1016/S0278-6915(02)00007-8
  167. Delaney B, Phillips K, Vasquez C, Wilson A, Cox D, Wang H-B, Manthey J. 2002. Genetic toxicity of standardized mixture of citrus polymethoxylated flavones. Food Chem Toxicol 40: 617-624 https://doi.org/10.1016/S0278-6915(02)00007-8
  168. Gibson L, Pike L, Kilbourn JP. Clinical study: effectivenss of cranberry juice in preventing urinary tract infections in long-term care facility patients. J Naturapathic Med 2: 45-47
  169. Howell AB. 2002. Cranberry proanthocyanidins and the maintenance of urinary tract health CRC Crit Rev Food Sci Nutr 42 (Suppl.): 273-278 https://doi.org/10.1080/10408390209351915
  170. Foo LY, Lu Y, Howell AB, Vorsa N. 2000. The structure of cranberry proanthocyanidins which inhibit adherence of uropathogenic p-fimbriated Escherichia coli in vitro. Phytochemistry 54: 173-181 https://doi.org/10.1016/S0031-9422(99)00573-7
  171. Musci I. 1986. Combined antiviral effect of quercetin and interferon on the multiplication of herpes simplex virus in cell cultures. In Flavonoids and Bioflavonoids, Farkas L, Gabor M, Kallay F, eds. Amsterdam, The Netherlands, Elsevier, p 333-338
  172. Kaul TN, Middleton E, Ogra PL. 1985. Antiviral effects of flavonoids on human viruses. J Med Virol 15: 71-79 https://doi.org/10.1002/jmv.1890150110
  173. Zhang J, Zhan B, Yao X, Song J. 1995. Antiviral activity of tannin from the pericarp of Punica granatum L. against genital herpes virus in vitro. Zhongguo Zhongyao Zazhi 20: 556-558
  174. Saito M, Hosoyama H, Ariga T, Kataoka S, Yamaji N. 1998. Antiulcer activity of grape seed extract and procyanidins. J Agric Food Chem 46: 1460-1464 https://doi.org/10.1021/jf9709156
  175. Yamakoshi J, Kataoka S, Koga T, Ariga T. 1999. Proantocyanidin-rich extract of grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 142: 139-149 https://doi.org/10.1016/S0021-9150(98)00230-5
  176. Nguyen VC, Lako JV, Oizumi A, Ariga T, Kataoka S. 1999. Anti-cataract activity of proanthocyanidin-rich grape seed extract in streptozotosin-induced diabetic rats. Proceedings of the Japan Society for Biotechnology and-Agrochemistry 1999 Annual Meeting, Vol. 73, 133
  177. Krohn RL, Ye X, Liu W, Joshi SS, Bagchi M, Preuss H G, Stohs SJ, Bagchi D. 1999. Differential effect of a novel grape seed extract on cultured human normal and malignant cells. In Natural Antioxidants and Anticarcinogens in Nutrition, Health, and Disease, Kumpulainen JT, Salonen JT, Cambridge, UK. Royal Society of Chemistry, p 443-450
  178. Brandi ML. 1997. Natural and synthetic isoflavones in the prevention and treatment of chronic diseases. Calcif Tissue Int 61: S5-S8 https://doi.org/10.1007/s002239900376
  179. Kerry N, Abbey M. 1998. The isoflavone genistein inhibits copper and peroxyl radical mediated low-density lipoprotein oxidation in vitro. Atherosclerosis 140: 341-347 https://doi.org/10.1016/S0021-9150(98)00138-5
  180. Rouseff RL, Nagy S. 1994. Health and nutritional benefits of citrus fruit component. Food Technol (11): 125-132
  181. Tanaka T, Kawabata K, Kakumoto M, Matsunaga K, Mori H, Murakami A, Kuki W, Takahashi Y, Yonei H, Satoh K, Hara A, Maeda M, Ota T, Odashima S, Koshimizu K, Ohigashi H. 1998. Chemoprevention of 4-nitriquinoline 1-oxide-induced oral carcinogenesis by citrus auraptene in rats. Carcinogenesis 19: 425-431 https://doi.org/10.1093/carcin/19.3.425
  182. Gabor M. 1986. Anti-inflammatory and antiallergic properties of flavonoids. In Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological, and Structure-Activity Relantionships.Vol. 213. Cody V, Middleton E, Harborne JV, Beretz A, Alan R. New York, NY. Liss, p 471-480
  183. Manthey JA, Grohmann K, Monatanari A, Ash K, Manthey CL. 1999. Polymethoxylated flavones derived from citrus suppress tumor necrosis factor-α expression by human monocytes. J Nat Prod 62: 441-444 https://doi.org/10.1021/np980431j
  184. Galley P, Thiollet MA. 1993. A double-blind placebocontrolled trial of a new veno-active flavonoid fraction in the treatment of symptomatic capillary fragility. Int Angiol 12: 69-72
  185. Godeberg P. 1994. Daflon 500 mg in the treatment of hemorroidal disease: a demonstration of efficacy in comparison with placebo. Angiology 45: 574-578 https://doi.org/10.1177/000331979404500613
  186. Deschner EE. 1992. Dietary quercetin (QU) and rutin (RU)as inhibitors of experimental colonic neoplasia. In Phenolic Compounds in Food and their Effects on Health II. Antioxidant and Cancer Prevention. Huang M-T, Ho C-T, Lee CY, eds. ACS Symposium Series 507, Washington, DC, American Chemical Society, p 265-268
  187. Alarcon de la Lastra C, Martin MJ, Motilva V. 1994. Antiulcer and gastroprotective effects of quercetin: a gross and histologic study. Pharmacology 48: 56-62 https://doi.org/10.1159/000139162
  188. Kahraman A, Erkasap N, Koken T, Serteser M, Aktepe F, Erkasap S. 2003. The anti oxidative and antihistaminic properties of quercetin in ethanol-induced gastric lesions. Toxicol 183: 133-142 https://doi.org/10.1016/S0300-483X(02)00514-0
  189. Alldrick AJ, Flynn J, Rowland IR. 1986. Effects of plantderived flavonoids and polyphenolic acids on the activity of mutagens from cooked food. Mutat Res 163: 225-232 https://doi.org/10.1016/0027-5107(86)90020-5
  190. Bidlack WR, Omaye ST, Meskin MS, Jahner D. 1998. Phytochemicals- a new paradigm. Lancaster, PA, Technomic Publishing Co, Inc
  191. Harborne JB. 1993. New naturally occurring plant polyphenols. In Polyphenolic Phenomena. Scalbert A, Ed. Paris, INRA, p 19-22
  192. Cosgrove DJ, Knievel DP, eds. Plant Physiology. Rockville, MD, American Society of Plant Physiologists
  193. Macheix JJ, Fleuriet A, Billot J. 1989. Fruit Phenolics. Boca Raton, FL, CRC Press
  194. Tomas-Barberan FA, Robins RJ. eds. 1997. Phytochemistry of Fruit and Vegetables. Oxford, UK, Clanderon Press
  195. Haslam E. 1989. Plant Polyphenols: Vegetable Tannins Revisited. Cambridge, UK. Cambridge University Press
  196. Mazza G. Ed. 1998. Functional Foods: Biochemichal and Processing Aspects. Lancaster, PA, Technomic Publishing Co, Inc
  197. Mazza G, Oomah BD. eds. 2000. Herbs. botanicals and teas. Lancaster, PA, Technomic Publishing Co, Inc
  198. Scalbert A, Williamson G. 2000. Dietary intake and bioavailability of polyphenols. J Nutr 130: 2073S-2085S
  199. Ho C-T, Osawa T, Huang M-T, Rosen RT. 1994. Food Phytochemicals forCancer Prevention II. Teas, Spices and Herbs. ACS Series 547, Washillgton, DC, American Chemical Society
  200. Huang M-T, Osawa T, Ho C-T, Rosen RT. 1994. Food Phytochemicals for Cancer Prevention I. Fruits and vegetables. ACS Series 546, Washington DC, American Chemical Society

Cited by

  1. Comparison of Nutritional and Functional Constituents, and Physicochemical Characteristics of Mulberrys from Seven Different Morus alba L. Cultivars vol.39, pp.10, 2010, https://doi.org/10.3746/jkfn.2010.39.10.1467
  2. Comparison Study of Three Varieties of Red Peppers in Terms of Total Polyphenol, Total Flavonoid Contents, and Antioxidant Activities vol.45, pp.5, 2016, https://doi.org/10.3746/jkfn.2016.45.5.765
  3. Comparison of proximate compositions, antioxidant, and antiproliferative activities between blueberry and Sageretia thea (Osbeck) M.C.Johnst fruit produced in Jeju Island vol.60, pp.2, 2017, https://doi.org/10.3839/jabc.2017.027
  4. Carrot (Daucus carota L.) peroxidase inactivation, phenolic content and physical changes kinetics due to blanching vol.97, pp.4, 2010, https://doi.org/10.1016/j.jfoodeng.2009.12.005
  5. Protein precipitating capacity of phenolics of wild blueberry leaves and fruits vol.96, pp.4, 2006, https://doi.org/10.1016/j.foodchem.2005.03.017
  6. Novel antioxidants in food quality preservation and health promotion vol.112, pp.9, 2010, https://doi.org/10.1002/ejlt.201000044
  7. Study on combined effects of blanching and sonication on different quality parameters of carrot juice vol.65, pp.1, 2014, https://doi.org/10.3109/09637486.2013.836735
  8. Cancer Prevention and Health Benefices of Traditionally Consumed Borago officinalis Plants vol.8, pp.1, 2016, https://doi.org/10.3390/nu8010048
  9. Isolation and Identification of Antioxidant Polyphenolic Compounds in Mulberry (Morus alba L.) Seeds vol.40, pp.4, 2011, https://doi.org/10.3746/jkfn.2011.40.4.517
  10. Antioxidant activities of blueberry hot water extracts with different extraction condition vol.22, pp.3, 2015, https://doi.org/10.11002/kjfp.2015.22.3.428
  11. A Study on the Optimization of Green Kiwi and Gold Kiwi Puree Mixing Ratio for the Best French Kiwi Dressing vol.21, pp.4, 2015, https://doi.org/10.20878/cshr.2015.21.4.002
  12. Physiological Activities of Leaf and Twig Extracts from Lindera obtusiloba Blume vol.29, pp.5, 2013, https://doi.org/10.9724/kfcs.2013.29.5.573
  13. Quantitative Changes of Polyphenolic Compounds in Mulberry (Morus alba L.) Leaves in Relation to Varieties, Harvest Period, and Heat Processing vol.17, pp.4, 2012, https://doi.org/10.3746/pnf.2012.17.4.280
  14. Quality Characteristics of Ginseng Seed Oil Obtained by Different Extraction Methods vol.43, pp.3, 2014, https://doi.org/10.3746/jkfn.2014.43.3.439
  15. Quality Characteristics and Granule Manufacture of Mulberry and Blueberry Fruit Extracts vol.28, pp.4, 2012, https://doi.org/10.9724/kfcs.2012.28.4.375
  16. Sterilization effect of electrolyzed water and chlorine dioxide on Rubus coreanus Miquel vol.20, pp.4, 2013, https://doi.org/10.11002/kjfp.2013.20.4.459
  17. Analysis of Functional Constituents of Mulberries (Morus alba L.) Cultivated in a Greenhouse and Open Field during Maturation vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1588
  18. Preservation Methods Impacted Phenolic, Flavonoid and Carotenoid Contents and Antioxidant Activities of Carrots (Daucus carota L.) vol.39, pp.6, 2015, https://doi.org/10.1111/jfpp.12391
  19. Quality Characteristics and Antioxidative Effects of Dasik added with Lycii Fructus Extract vol.23, pp.6, 2014, https://doi.org/10.5934/kjhe.2014.23.6.1217
  20. Use of Dairy and Plant-Derived Lactobacilli as Starters for Cherry Juice Fermentation vol.11, pp.2, 2019, https://doi.org/10.3390/nu11020213
  21. Quantitative Changes in Phenolic Compounds of Safflower (Carthamus tinctorius L.) Seeds during Growth and Processing vol.11, pp.4, 2003, https://doi.org/10.3746/jfn.2006.11.4.311
  22. 잡곡발효물의 제조와 항산화 활성 비교 vol.42, pp.8, 2003, https://doi.org/10.3746/jkfn.2013.42.8.1175
  23. A Study on the Optimization of Green Kiwi and Gold Kiwi Puree Mixing Ratio for the Best French Kiwi Dressing vol.21, pp.4, 2015, https://doi.org/10.20878/cshr.2015.21.4.002002002
  24. Quality Characteristics of Fresh Noodle with Freeze-dried Mulberry (Cudrania tricuspidata) Powder vol.28, pp.5, 2003, https://doi.org/10.17495/easdl.2018.8.28.5.375