DOI QR코드

DOI QR Code

An Improved Rectangular Decomposition Algorithm for Data Mining

데이터 마이닝을 위한 개선된 직사각형 분해 알고리즘

  • 송지영 (고려대학교 대학원 전산학과) ;
  • 임영희 (대전대학교 컴퓨터정보통신공학부) ;
  • 박대희 (고려대학교 컴퓨터정보학과)
  • Published : 2003.06.01

Abstract

In this paper, we propose a novel improved algorithm for the rectangular decomposition technique for the purpose of performing data mining from large scaled database in a dynamic environment. The proposed algorithm performs the rectangular decompositions by transforming a binary matrix to bipartite graph and finding bicliques from the transformed bipartite graph. To demonstrate its effectiveness, we compare the proposed one which is based on the newly derived mathematical properties with those of other methods with respect to the classification rate, the number of rules, and complexity analysis.

본 논문에서는 동적으로 변화하는 대용량의 데이터베이스로부터 보다 현실적인 데이터 마이닝의 수행을 가능케 하기 위하여 기존의 직사각형분해 알고리즘을 개선한 새로운 알고리즘을 제안한다. 새로운 알고리즘은 이진 행렬을 이분(bipartite) 그래프로 변환하고, 변환된 이분 그래프에서 이분클리크(biclique)를 찾음으로써 직사각형 분해를 수행한다 제안된 알고리즘은 새롭게 유도된 수학적 정리들을 바탕으로 출발하였으며, 복잡도 분석을 통하여 그 효율성을 보이고, 기존의 분류 방법론과의 비교를 통하여 제안된 방법론이 규칙의 수와 분류율면에서 우수함을 보인다.

Keywords

References

  1. M.-S. Chen, J. Han and P. Yu, 'Data Mining : An Overview from Database Perspective,' IEEE Transaction on Knowledge and Data Engineering, Vol.8, No.6, pp.866-883, 1996 https://doi.org/10.1109/69.553155
  2. J. G. Ganascia, Charade, 'Apprentissage de bases de connaissances,' Induction Symbolique et Numerique a Partir de Donnees(Cepadues-edition), pp.309-326, 1991
  3. M. Maddouri, A. Jaoua, 'Incremental Learning : Proposition and evaluation of methods,' Proceedings of the Joint International Conference on Information Science JICIS '95, 1995
  4. V. Novak, 'Fuzzy Sets and their Applications,' Adam Hilger, Bristol, 1989
  5. P. P. Wang, 'Advances in Fuzzy Theory and Technology,' Duke University Edition, 1994
  6. L. A. Zadeh, 'Fuzzy Sets and their Applications to Pattern Classification and Clustering Analysis Classification and Clustering,' Academic Press, New York, 1977
  7. M. Maddouri, S. Elldumi, Jaoua A, 'An Incremental Learning System for Imprecise and Uncertain Knowledge Discovery,' Information Sciences, Vol.109, pp.149-164, 1998 https://doi.org/10.1016/S0020-0255(98)00015-2
  8. R. Khcherif, A. Jaoua, 'Rectangular Decomposition Heuristics for Documentary Databases,' Information Sciences, Vol.102, pp.187-202, 1997 https://doi.org/10.1016/S0020-0255(97)00003-0
  9. D. S. Hochbaum, 'Approximating Clique and Biclique Problems,' Journal of Algorithm, Vol.29, pp.174-200, 1998 https://doi.org/10.1006/jagm.1998.0964
  10. M. Yannakakis, 'Node deletion problems on bipartite graphs,' SIAM J. Comput, Vol.10, pp.310-327, 1981 https://doi.org/10.1137/0210022
  11. D. S. Hochbaum, 'Approximating Clique and Biclique Problems,' Journal of Algorithms. Vol.29, pp.174-200, 1998 https://doi.org/10.1006/jagm.1998.0964
  12. H. Ishibuchi, K. Nozaki, H. Tanaka, 'Effective fuzzy partition of pattern space for classification problems,' Fuzzy Sets and Systems, Vol.59, pp.295-304, 1993 https://doi.org/10.1016/0165-0114(93)90474-V
  13. Jang, D.-S., Choi, H. I., 'Automatic Generation of Fuzzy Rules with Fuzzy Associative Memory,' Proceeding of the ISCA 5th International Conference, pp.182-186, 1996
  14. Morton Nadler, Eric P.Smith, 'Pattern Recognition Engineering,' John Wiley and Sons, pp.341-344, 1997
  15. M. Maddouri, A. Jaoua, 'Comparative empirical evaluation of the discovered knowledge,' Proceeding of the IEA/AIE'97 10th International Conference, pp.7-10, 1997
  16. S. M. Weiss, C. A. Kulikowski, 'Computer Systems that Learn,' Morgan Kaufmann, Los Altos, CA, 1991