초록
본 논문에서는 다수의 사용자가 있는 주파수 선택성 페이딩 환경하의 multi-rate CDMA 시스템에서Hopfield 신경망의 시정수를 제어하는 알고리즘을 이용하여 Hopfeld 신경망 기반 다중 사용자 검출기의 국부 최소점 문제를 간단히 해결하고 설계된 검출기의 성능을 병렬 간섭 제거기와 비교 분석하였다 또한 역방향 링크는 부호 길이가 256 칩인 short 스크램블링 부호를 가정하고, short 스크램블링 부호의 주기성을 이용한 간단한 상관계수 예측 알고리즘을 사용하여 주기적인 확산부호간 상관계수 행렬을 계산하고 Hopfield 신경망의 입력으로 사용하여 확산 코드의 주기에 상응하는 연산에 필요한 신경망회로의 복잡도를 1/(64*64) 배로 단순화하였다. 그, 결과 Hopfield 신경망을 이용한 다중 사용자 검출기(HNN-MUD)는 다중 사용자 간섭(MAI)을 효과적으로 제거하여 기존의 검출기에 비해 낮은 비트 오류율을 보였고 근원거리상황(near-far situation)에서도 타 사용자의 전력의 크기에 관계없이 거의 일정한 비트 오류율을 보여, 기존의 검출기 보다 성능이 향상됨을 보였다.
In this paper, we propose a time constant control method for sieving local minimum problem of the multiuser detector using Hopfield neural network for synchronous multi-rate code division multiple access(CDMA) system in selective fading environments and its performance is compared with that of the parallel interference cancellation(PIC). We also assume that short scrambling codes of 256 chip length are used an uplink, suggest a simple correlation estimation algorithm and circuit complexity reduction method by using cyclostationarity property of short scrambling code.It is verified that multiuser detector using Hopfield neural network more efficiently cancels multiple access interference(MAI) and obtain better bit error rate and near-far resistant than conventional detector.