다양한 구조의 알킬기를 함유한 친유성 몬모릴로나이트의 제조 및 특성 연구

Synthesis and Characterization of Organophilic Montmorillonites Modified with Various Alkyl Substituents

  • 심종천 (한국화학연구원 화학소재연구부) ;
  • 김용운 (한국화학연구원 화학소재연구부) ;
  • 원종찬 (한국화학연구원 화학소재연구부) ;
  • 최길영 (한국화학연구원 화학소재연구부) ;
  • 이미혜 (한국화학연구원 화학소재연구부)
  • 발행 : 2003.03.01

초록

몬모릴로나이트에 사슬 길이가 긴 알킬기를 삽입하면 층간 거리가 증가할 뿐만 아니라 소수성도 증가하며 이와 같은 특성은 다양한 고분자에 적용하여 나노복합체를 형성할 때 몬모릴로나이트의 박리거동에 영향을 미치는 것으로 알려져 있다. 본 연구에서는 물/이소프로필 알코올 용액에 몬모릴로나이트를 분산하고 여러 치환 구조를 가지고 있는 알킬 아민들의 암모늄염을 이용하여 친유성 몬모릴로나이트를 제조하여 열분해 특성, 층간 간격, 소수성 등을 조사하였다. X-선 회절 실험에 의해 알킬 치환기의 길이가 증가함에 따라 실리케이트 층간 간격이 13.1 $\AA$에서 29.4 $\AA$까지 증가함을 확인하였으며 또한 알킬 아민에 치환된 알킬 사슬의 수에 따라 친유성 몬모릴로나이트의 흡수성은 2.7%까지 감소하는 것을 확인하였다.

It has been known that the intercalation of long alkyl chains in montmorillonites (MMT) increased the hydrophobicity as well as gallery spacing of UT, which has influenced on the exfoliation behavior of various polymers. A series of organophilic MMTs were synthesized from the water/isopropyl alcohol solution of MMT with ammonium salts of various alkyl amines. The properties of obtained MMTs such as thermal decomposition temperature, gallery spacing as well as hydrophobic property were investigated. The X-ray diffraction experiments on organophilic montmorillonite demonstrated that the increase of length of alkyl substituent resulted in increase in the spacing between silicate layers, which was ranged from 13.1 to 29.4 $\AA$. On the other hand, introduction of (di-, tri-) alkyl substituents in ammonium salts decreased water absorption of organophiplic montmorillonite to 2.7%.

키워드

참고문헌

  1. Advanced Technology and Application of Polymer Nano-Composite K. Chujo
  2. Appl. Clay Sci. v.15 P. C. Lebaron;Z. Wang;T. J. Pinnavaia https://doi.org/10.1016/S0169-1317(99)00017-4
  3. Mat. Sci. Eng. v.28 M. Alexandre;P. Dubois https://doi.org/10.1016/S0927-796X(00)00012-7
  4. Advanced Technology and Application of Polymer Nano-Composite K. Chujo
  5. Chem. Mater. v.6 T. Lan;P. D. Kaviratna;T. J. Pinnavaia https://doi.org/10.1021/cm00041a002
  6. J. Mater. Res. v.8 A. Usuki;Y. Kojima;M. Kawasumi;A. Okada;Y. Fukushima;T. Kurauchi;O. Kamigaito https://doi.org/10.1557/JMR.1993.1179
  7. J. Mater. Res. v.8 A. Usuki;Y. Kojima;M. Kawasumi;A. Okada;Y. Fukushima;T. Kurauchi;O. Kamigaito https://doi.org/10.1557/JMR.1993.1174
  8. J. Polym. Sci. PartA: Polym.Chem. v.33 P. M. Messersmith;E. P. Giannelis https://doi.org/10.1002/pola.1995.080330707
  9. Polymer v.40 Y. Yang;Z.-K.Zhu;J. Yin;X.-y. Wang;Z. Qi https://doi.org/10.1016/S0032-3861(98)00675-2
  10. Appl. Clay Sci. v.3 A. Oya;M. Saito;S. Otani https://doi.org/10.1016/0169-1317(88)90020-8
  11. Chem. Mater. v.10 A. Szabo;D. Gournis;M. A. Karakassides;D. Prtridis https://doi.org/10.1021/cm9706311
  12. Macromol. Chem. Symp. v.14 K.-Y Choi;B. Y. Lee;J. C. Won;J. H. Lee