오존 처리가 폴리에틸렌 필름의 염색성에 미치는 영향

Effect of Ozone Treatment on Dyeability of Polyethylene Film

  • 박수진 (한국화학원구원 화학소재연구부) ;
  • 신준식 (한국화학원구원 화학소재연구부) ;
  • 김학용 (전북대학교 섬유공학과) ;
  • 이덕래 (전북대학교 섬유공학과)
  • 발행 : 2003.03.01

초록

오존 처리된 저밀도 폴리에틸렌 (LDPE) 필름의 표면 작용기와 표면 자유에너지에 대하여 고찰하였다. 오존 표면처리 조건을 각각 처리시간, 오존 생산량, 그리고 오존의 농도로 변화시켰으며, 오존 처리된 LDPE 필름 표면에 도입된 작용기는 FTIR-ATR과 XPS 분석을 통하여 알아보았다 LDPE 필름의 표면 자유에너지는 접촉각 측정을 통하여 고찰하였다. 실험결과, 오존으로 표면처리된 LDPE 픽름은 표면에 형성된 산소 함유 작용기로 인하여 물 접촉각이 15$^{\circ}$ 정도 감소하였고, 그 결과 표면 자유에너지의 증가및 $O_{IS}$ / $C_{IS}$ 의 증가를 확인할 수 있었다. 또한, 표면 자유에너지와 산소 함유 작용기는 오존 표면처리 시간과 오존의 농도에 비례하는 관계를 보인 반면, 오존의 총 발생량의 변화는 표면 자유에너지 및 $O_{IS}$ / $C_{IS}$ 의 증가와는 무관하였다. Kubelka-Munk 식을 이용한 염색성 측정 결과로부터, 오존 표면처리는 LDPE 필름 표면에 산소 작용기를 형성시키는데 중요한 역할을 하는 것을 확인할 수 있었으며, 최종 염기성 염료에의 염색성을 향상시켰다.

The surface energy and the effect of functional groups on the surface of the ozone-treated low-density polyethylene (LDPE) film were studied. Treatment conditions were treatment time, total amount of transferred ozone, and ozone concentration. The introduction of polar groups on the surface of LDPE film after ozone treatment was confirmed by FTIR-ATR and XPS analyses. Surface fee energy of the LDPE film was examined by a contact angle method. The ozone treated-LDPE film showed a decreased water contact angles about 15$^{\circ}$ mainly due to the increased concentration of oxygen-containing functional groups, which was attributed to the increased surface free energy or $O_{IS}/C_{IS}$Also, the concentrations of the oxygen-containing functional groups on the surface of LDPE film increased with ozone treatment time and concentration, whereas no significant effects were found for the total amount of transferred ozone. From the dyeability test using Kubelka-Munk equation, it was found that the ozone treatment plays an important role in the growth of oxygen-containing functional groups of LDPE film, resulting in the improvement of dyeability for basic dyeing agent.

키워드

참고문헌

  1. Physical Chemistry of Surfaces(5th ed.) A. W. Adamson
  2. J. Colloid Interface Sci. v.236 S. J. Park;J. S. Jin https://doi.org/10.1006/jcis.2000.7380
  3. J. Electrostatics v.46 K. Takashima;T. Oda https://doi.org/10.1016/S0304-3886(99)00014-5
  4. Interfecial Forces and Fields :Theory and Applications S. J. Park;J. P. Hsu(Editor)
  5. J. Appl. Polym. Sci. v.71 D. S. Bag;V. P. Kumar;S. Maiti https://doi.org/10.1002/(SICI)1097-4628(19990214)71:7<1041::AID-APP1>3.0.CO;2-R
  6. Macromolecules v.26 K. L. Tan;L. L. Woon;H. K. Wong https://doi.org/10.1021/ma00063a030
  7. J. Appl. Polym. Sci. v.68 F. Seto;K. Fukuyama;Y. Muralka;A. Kishida;M. Akashi https://doi.org/10.1002/(SICI)1097-4628(19980613)68:11<1773::AID-APP8>3.0.CO;2-G
  8. Polym. J. v.31 S. J. Park;W. B. Park;J. R. Lee https://doi.org/10.1295/polymj.31.28
  9. J. Appl. Polym. Sci. v.77 M. M. Nasef https://doi.org/10.1002/1097-4628(20000801)77:5<1003::AID-APP7>3.0.CO;2-K
  10. Appl. Catal. A.:Gen. v.203 I. Kirics;A. Fudala;Z. Konya;K. Hernadi;P. Lentz;J. B. Nagy https://doi.org/10.1016/S0926-860X(00)00563-9
  11. Macromolecules v.26 M. Kuzuya;J. Niwa;H. Ito https://doi.org/10.1021/ma00060a030
  12. J. Membr. Sci. v.169 Y. Wang;J. H. Kim;K. H. Choo;Y. S. Lee;C. H. Lee https://doi.org/10.1016/S0376-7388(99)00345-2
  13. J. Appl. Polym. Sci. v.79 T. Ogawa;H. Mukai;S. O.sawa https://doi.org/10.1002/1097-4628(20010214)79:7<1162::AID-APP20>3.0.CO;2-Y
  14. Appl. Surf. Sci. v.144 H. Y. Nie;M. J. Wazak;B. Berno;N. S. McIntyre https://doi.org/10.1016/S0169-4332(98)00879-4
  15. Surf. Sci. v.433 C. Ton-That;D. O. H. Teare;P. A. Campbell;R. H. Bradley https://doi.org/10.1016/S0039-6028(99)00155-7
  16. Biomaterials v.22 Y. G. Ko;Y. H. Kim;K. D. Park;H. J. Lee;W. K. Lee;H. D. Psrk;S. H. Kim;G. S. Lee;D. J. Ahn https://doi.org/10.1016/S0142-9612(00)00400-2
  17. Carbon v.36 X. Fu;W. Lu;D. D. L. Chung https://doi.org/10.1016/S0008-6223(98)00115-8
  18. J. Colloid Inertface Sci. v.226 S. J. Park;M. S. Cho;J. R. Lee https://doi.org/10.1006/jcis.2000.6787
  19. J. Appl. Polym. Sci. v.74 S. Suzer;A. Argun;O. Vatansever;O. Aral https://doi.org/10.1002/(SICI)1097-4628(19991114)74:7<1846::AID-APP29>3.0.CO;2-B
  20. J. Appl. Poylm. Sci. v.13 D. K. Owens;R. C. Wendt https://doi.org/10.1002/app.1969.070130815
  21. Polymer Inerface and Adhesion S. Wu
  22. Z. Tech.Phys. v.142 P. Kubelka;F. Munk
  23. Handbook of X-ray Photoelectron Spectroscopy C. D. Wagner;W. M. Riggs;L. E. Davis;J. F. Moulder
  24. J. Phys. Chem. v.67 F. M. Fowkes https://doi.org/10.1021/j100806a008
  25. J. Adhes. Sci. tECHNOL. v.14 S. J. Park;J. R. Lee;J. S. Jin https://doi.org/10.1163/156856100742483