Selective Adsorption Properties of Nitrate ion in Sulfate and Nitrate Solution by Bead and Fibrous Hybrid Ion Exchange Bed

비드와 섬유 혼성이온교환 베드를 이용한 황산이온과 질산이온 혼합용액에서 질산이온의 선택 흡착 특성

  • Published : 2003.01.01

Abstract

In this study, we have investigated the adsorption properties for nitrate ion in ground water using mixed resin type hybrid ion exchange (HIXF) and fiber type ion exchanger. Their swelling ratio (4.45 g/g) and ion exchange capacities (2.45 meq/g) were higer than the swelling ratio of IEC and IXF. Adsorption yield increased for nitrate $NO_3^-$ and sulfate $SO_4^{2-}$ ions were optimal at the concentration ratios of nitrate and sulfate below 1.0 and the adsorption yields were 100% and 20%, respectively. On the other hand it was shown that the degree of adsorpted for nitrate to pH 3, but it was little changed in the other pH range. We found that the selective adsorption capacity for nitrate was the optimal the mixing ratios of resin and fibrous ion exchanger of below 0.5.

본 연구는 비드상 수지와 섬유이온교환체를 혼합한 이온교환 복합섬유의 지하수 중 질산이온의 선택흡착성능을 확인하였다. HIXF의 팽윤율은 4.45 g/g이었으며, 이온교환용량은 2.45 meq/g으로 IEC, IXF보다 높게 나타났다. 또한 NO$_{3}$$^{-}$/SO$_{3}$ $^{2-}$ 농도비가 1.0 이하에서 NO$_{3}$$^{-}$의 흡착은 100%로 이루어졌으며, 반면 SO$_{3}$$^{2-}$ 은 20%흡착되었다. 한편, NO$_{3}$$^{-}$기 흡착은 pH 3까지 크게 증가하였으며 그 이상에서는 증가하지 않는 경향을 나타내었다. HIXF의 비드와 섬유이온교환체의 혼합비가 0.5 이하에서 NO$_{3}$$^{-}$에 대한 선택흡착능은 우수하였다.

Keywords

References

  1. J. Atom Energy Soc. Japan v.10 E. N. Ogata https://doi.org/10.3327/jaesj.10.672
  2. J. Korean Soc. Water Quality Mar. v.11 S. I. Choi;J. M. Kim
  3. Wat. Res. v.21 J. P. van der Hoek;A. Klapwijk https://doi.org/10.1016/S0043-1354(87)80018-0
  4. Regulatroy Toxicol & Pharnacol v.7 A. M. Fan https://doi.org/10.1016/0273-2300(87)90024-9
  5. Environmental Health Perspectives v.83 V. M. Goldberg https://doi.org/10.2307/3430646
  6. Removal of Nitrate from Contaminated Water Supplies for Public Use Final Report G. A. Guter
  7. React. Funct. Polym. v.27 H. M. Anasthas;V. G. caikar
  8. Sep. Purif. Methods v.16 Y. Kuo;C. L. Munson;W. G. Rixey;A. A. Garcia;M. Frieman;C. J. King https://doi.org/10.1080/03602548708058537
  9. Sep. Purif. Methods v.16 C. L. Muson;A. A. Garcia;Y. Kuo;M. Frieman;C. J. King https://doi.org/10.1080/03602548708058538
  10. Sep. Purif. Methods v.16 M. Frierman;Y. Kuo;D. Joshi;A. A. Garcia;C. J. King https://doi.org/10.1080/03602548708058539
  11. J. Chem. Eng. Japan v.23 T. Kato;T. Kago;K. Kusakabe;S. Morooka;H. Egawa
  12. J. Chem. Tech. Biotech. v.30 K. Shakr;S. G. Beheir
  13. J. Appl. Polym. Soc. v.30 H. Egawa;T. Nonaka;H. Maeda https://doi.org/10.1002/app.1985.070300809
  14. J. of the Korean Chemical Soc. v.29 D. W. Kim;K. S. Kim;N. K. Lee
  15. Sep. Sci. and Tech. v.33 V. M. Bhandari https://doi.org/10.1080/01496399808545043
  16. Sep. Sci. and Tech. v.31 R. S. Juang;T. C. Chou https://doi.org/10.1080/01496399608001404
  17. Sep. Process. and Tech. v.1 N. L. Ricker;E. F Pitman;C. J. King