마그네타이트가 충전된 NBR의 전기적 특성 및 물성 연구

Electrical and Physical Properties of Magnetite-Filled NBR

  • 발행 : 2003.01.01

초록

본 연구에서는 $Fe_3O_4$ (magnetite)의 함량 변화와 온도 변화가 NBR/$Fe_3O_4$ 혼합물의 전기걱도도 ($\sigma$)에 미치는 영향을 조사하였다. 최소 최적 혼합비 (percolation threshold, $P_c$) 개념이 본 연구에서 제조한 전도성 입자가 충전된 복합체에 적용되며, 혼합물내 $Fe_3O_4$의 농도가 22%를 초과할 때 $\sigma$가 급격히 증가함을 확인하였다. $\sigma$의 온도 의존성은 $P_c$ 또는 그 이하에서 열적으로 활성화되며, 마그네이트가 NBR 고무의 강화 및 전도성 충전제로서의 역할을 할 수 있음을 조사하였으며, 충전제 함량이 30 phr인 복합체는 실온에서 고전압을 걸어줄 경우 전류는 전압제곱에 비례한 것으로 나타났다. 또한, 50 pk의 마그네이트가 충전된 복합체가 최적의 물리적 가교점으로 인하여 가장 우수한 인장강도와 파단시 신장율을 보였으며 모듈러스가 마그네이트의 강화효과 및 혼합물의 토오크 곡선으로부터 얻은 점도와 관련이 있음을 확인하였다.

In this work, the effect of different contents of $Fe_3O_4$ and temperature variation on the electrical conductivity ($\sigma$) in the polar acrylonitrile butadiene rubber (NBR)/$Fe_3O_4$ (magnetite) mixture system was investigated. It was found that the percolation threshold concept holds true for the conductive particle-filled composites where $\sigma$ indicates a nearly sharp increase when the concentration of magnetite in the mixture exceeds 22%. The temperature dependence of $\sigma$ was thermally activated below and at the percolation threshold ($P_c$). Magnetite acted as reinforcing and conductive filler for NBR. At room temperature and higher voltages, the electrical current was proportional to the square of voltage ($I{\propto}V^2$) for the composites which contain 30 phr of magnetite. Moreover, it was shown that the composites with magnetite of 50 phr showed the highest tensile strength and elongation at break, which was due to the formation of optimal physical interlock and crosslinking. The results of 100%, 200%, and 300% Young moduli said that the moduli are largely correlated with reinforcement effect of magnetite and viscosity of the blends from torque curve.

키워드

참고문헌

  1. Handbook of Conducting Polymers T. A. Skotheim(ed.)
  2. Encyclopedia of Polymeric Materials J. C. Salamone(ed.)
  3. Progr. Polym. Sci. v.27 A. Pron;P. Rannou https://doi.org/10.1016/S0079-6700(01)00043-0
  4. Polymer v.40 F. Faez;W. A. Gazotti;M. A. Paoli https://doi.org/10.1016/S0032-3861(98)00775-7
  5. Polymer v.39 K. P. Sau;T. K. Chanki;D. Khastgir https://doi.org/10.1016/S0032-3861(97)10188-4
  6. Thin Solid Films v.259 M. Wan;M. Li;J. Li;Z. Li https://doi.org/10.1016/0040-6090(94)06394-X
  7. Synthetic Metals v.123 M. E. Leyva;G. M. O Barra;B. G. Soares https://doi.org/10.1016/S0379-6779(01)00319-8
  8. J. Colloid Interface Sci. v.232 S. J. Park;J. S. Kim https://doi.org/10.1006/jcis.2000.7160
  9. Eur. Polym. J. v.34 D. Kumar;R. C. Sharma
  10. Handbook of Preparative Inorganic Chemistry v.12 G. Bauer(ed.)
  11. International Symposium on the Reactivity of Solids, (8th Ed.) B. Gillot(ed.);A. Rousset;j. Paris(ed.);P. Barret(ed.)
  12. Eur. Polym. J. v.37 R. Faez;M. A. Paoli https://doi.org/10.1016/S0014-3057(00)00235-4
  13. Mater. Chem. Phys. v.52 M. K. El-Mansy;N. M. Shash;M. H. Maklad;E. M. Diefallah https://doi.org/10.1016/S0254-0584(98)80009-6
  14. J. Mater. Process. Technol. v.68 M. H. Ali;A. A. Hashem https://doi.org/10.1016/S0924-0136(96)00023-4
  15. Radiation Chemistry of Macromolecules D. Malcolm(ed.)
  16. Eur. Polym. J. v.37 R. Faez;M. A. Paoli https://doi.org/10.1016/S0014-3057(00)00235-4
  17. Macromolecules v.21 J. S. Ventras;J. L. Duda;H. C. Ling https://doi.org/10.1021/ma00183a042
  18. Carbon v.39 S. J. Park;M. K. Seo https://doi.org/10.1016/S0008-6223(00)00248-7
  19. J. Colloid Interface Sci. v.226 S. J. Park;M. S. Cho;J. R. Lee https://doi.org/10.1006/jcis.2000.6787
  20. Carbon v.40 F. Carmona;J. Ravier https://doi.org/10.1016/S0008-6223(01)00166-X