Effects of Annealing on Structure and Properties of TLCP/PEN/PET Ternary Blend Fibers

  • Kim, Jun-Young (Department of Fiber & Polymer Engineering, Center for Advanced Functional Polymers, Hanyang University) ;
  • Seo, Eun-Su (Department of Fiber & Polymer Engineering, Center for Advanced Functional Polymers, Hanyang University) ;
  • Kim, Seong-Hun (Department of Fiber & Polymer Engineering, Center for Advanced Functional Polymers, Hanyang University) ;
  • Takeshi Kikutani (Department of Organic and Polymeric Materials, Tokyo Institute of Technology)
  • Published : 2003.02.01

Abstract

Thermotropic liquid crystalline polymer (TLCP)/poly(ethylene 2,6-naphthalate) (PEN)/poly(ethylene terephthalate) (PET) ternary blends were prepared by melt blending, and were melt-spun to fibers at various spinning speeds in an effort to improve fiber performance and processability. Structure and property relationship of TLCP/PEN/PET ternary blend fibers and effects of annealing on those were investigated. The mechanical properties of ternary blend fibers could be significantly improved by annealing, which were attributed to the development of more ordered crystallites and the formation of more perfect crystalline structures. TLCP/PEN/PET ternary blend fibers that annealed at 18$0^{\circ}C$ for 2 h, exhibited the highest values of tensile strength and modulus. The double melting behaviors observed in the annealed ternary blend fibers depended on annealing temperature and time, which might be caused by different lamellae thickness distribution as a result of the melting-reorganization process during the DSC scans.

Keywords

References

  1. Polymer v.28 M. Amano;K. Nakagawa https://doi.org/10.1016/0032-3861(87)90415-0
  2. Polym. J. v.20 S. H. Jung;S. C. Kim https://doi.org/10.1295/polymj.20.73
  3. Polym. Eng. Sci. v.27 G. Kiss https://doi.org/10.1002/pen.760270606
  4. Polym. J. v.26 L. M. Sun;T. Sakamoto;S. Ueta;K. Koga;M. Takayanagi https://doi.org/10.1295/polymj.26.939
  5. Polym. J. v.26 L. M. Sun;T. Sakamoto;S. Ueta;K. Koga;M. Takayanagi https://doi.org/10.1295/polymj.26.953
  6. J. Appl. Polym. Sci. v.74 S. H. Kim;S. H. Hong;S. S. Hwang;H. O. Yoo https://doi.org/10.1002/(SICI)1097-4628(19991205)74:10<2448::AID-APP13>3.0.CO;2-1
  7. J. Korea Fiber Society v.34 no.12 J. G. Lee;S. H. Kim
  8. Korea Polym. J. v.6 no.5 Y. S. Ni;J. I. Jin;S. J. Jeon;B. H. Lee;B. W. Jo
  9. Korea Polym. J. v.9 no.4 Y. S. Seo;H. J. Kim;B. Y. Kim;S. M. Hong;S. S. Hwang;K. U. Kim
  10. Polymer v.24 R. E. Bretas;D. G. Baird
  11. Polymer v.34 W. C. Lee;T. DiBenedetto https://doi.org/10.1016/0032-3861(93)90348-E
  12. J. Polym. Sci., Polym. Chem. Ed. v.33 G. H. Huand;M. Lambla https://doi.org/10.1002/pola.1995.080330112
  13. Korea Polym. J. v.6 no.1 T. T. Hsieh;C. Tiu;K. H. Hsieh;G. P. Simon
  14. J. Mater. Sci. v.21 L. C. Saywer;M. Jaffe https://doi.org/10.1007/BF00547924
  15. Polym. Compos. v.11 B. Bassett;A. F. Yee https://doi.org/10.1002/pc.750110103
  16. Polymer v.42 E. L. Bedia;S. Murakami;T. Kitade;S. Kohjiya https://doi.org/10.1016/S0032-3861(01)00236-1
  17. Polym. Eng. Sci. v.39 S. P. Rwei https://doi.org/10.1002/pen.11634
  18. J. Macromol. Sci. Phys. v.B38 M. Kyotani;W. Pudjiastut;A. J. Saeed
  19. Macromol. Res. v.10 no.1 J. K. Lee;K. H. Lee; B. S. Jin https://doi.org/10.1007/BF03218288
  20. Polymer v.34 M. E. Stewart;A. J. Cox;D. M. Naylor https://doi.org/10.1016/0032-3861(93)90667-Y
  21. Polymer(Korea) v.24 no.1 J. K. Park;B. J. Jeong;S. H. Kim
  22. J. Appl. Polym. Sci. v.70 S. H. Kim;S. W. Kang;J. K. Park;Y. H. Park https://doi.org/10.1002/(SICI)1097-4628(19981107)70:6<1065::AID-APP3>3.0.CO;2-M
  23. Macromol. Res. v.10 no.3 W. J. Bae;W. H. Jo;Y. H. Park https://doi.org/10.1007/BF03218264
  24. Polymer v.24 D. J. Blundell;B. N. Osborn https://doi.org/10.1016/0032-3861(83)90144-1
  25. High-Speed Fiber Spinning A. Ziabicki;H. Kawai
  26. Macromolecules v.20 S. Z. D. Cheng;Z. Q. Wu;B. Wunderlich https://doi.org/10.1021/ma00177a028
  27. J. Polym. Sci., Polym. Phys. Ed. v.36 H. G. Kim;R. E. Robertson https://doi.org/10.1002/(SICI)1099-0488(19980730)36:10<1757::AID-POLB17>3.0.CO;2-8
  28. Polymer v.37 D. J. Blundell https://doi.org/10.1016/0032-3861(96)80843-3
  29. J. Polym. Sci., Polym. Phys. Ed. v.36 F. J. Medellin-Rodriguez;P. J. Phillips;J. S. Lin;C. A. Avila-Orta https://doi.org/10.1002/(SICI)1099-0488(19980415)36:5<763::AID-POLB4>3.0.CO;2-M
  30. Polym. Prepr. v.5 S. S. Wu;D. S. Kalika;R. R. Lamonte;S. Makhija
  31. Polymer v.15 P. P. Willson https://doi.org/10.1016/0032-3861(74)90124-4
  32. J. Polym. Sci., Polym. Phys. Ed. v.14 G. M. Bhatt;J. P. Bell https://doi.org/10.1002/pol.1976.180140401
  33. J. Appl. Polym. Sci. v.64 N. S. Murthy;C. Bednarczyk;P. B. Rim;C. J. Nelson https://doi.org/10.1002/(SICI)1097-4628(19970516)64:7<1363::AID-APP16>3.0.CO;2-Y
  34. Polymer v.34 L. Mascia;Z. Fekkai https://doi.org/10.1016/0032-3861(93)90854-4