해양생태계모델에 의한 하계 진동만의 영양염변동

Nutrient Variations in the Jindong Bay during Summer by Ecosystem Modeling

  • 김동선 (부경대학교 해양산업개발연구소) ;
  • 홍철훈 (부경대학교 해양생산관리학과)
  • 발행 : 2003.05.01

초록

하계 진동만에서 얻어진 영양염 DIN(dissolved inorganic nitrogen) 및 DIP(dissolved inorganic phosphate)의 분포는 이들 농도가 만안쪽에서 매우 높은 것이 특징이다. 또 표층(0∼1 m)과 저층(8 m∼bottom)은 만 안쪽이 고농도 이고 중층(1∼8 m)은 상대적으로 낮다. 이러한 영양염의 분포특성을 바람, 조류, 밀도의 수평경도력 및 잔차류를 고려한 생태계모델을 이용하여 조사하였다. 수치실험은 이들 조건들이 영양염에 각기 어떻게 영향을 미치는 가에 주목하여 실시되었다 조석잔차류를 고려한 경우는 전반적으로 관측값보다 저농도의 분포를 보였고, 바람, 조석잔차류 및 밀도의 수평경도력에 의한 효과를 포함한 경우는 보다 관측값에 근접한 결과를 얻었다 이러한 결과는 통계적 분석 방법에서도 잘 뒤받침된다. 본 연구결과는 하계 진동만에서 영양염의 분포변동에 조류효과 뿐만이 아니라 바람에 의한 취송류 및 밀도의 수평경도력에 의해 발생하는 밀도류의 효과가 매우 중요함을 시사한다.

During summer, the DIN (dissolved inorganic nitrogen) and DIP (dissolved inorganic phosphate) observed in the Jindong Bay in the southern sea of Korea show much higher values in the inner area of the bay. In general, they have high values in the upper (0-1 m) and lower layers (8 m-bottom), but are relatively lower in the middle layer (1-8 m). These features in their distribution are examined using an ecosystem model with considering the wind, tidal current, horizontal gradient of water density and residual flow. The experiments were focused on how to influence nutrients associated with these conditions. In the experiment with tide-induced residual flow, the values of nutrients appeared lower than the observation, and were well corresponded to it when the effects of wind, tide-induced residual current and horizontal gradient of water density were additionally imposed. A statistical analysis identifies these results. This paper suggests that variation of nutrient in the Jindong Bay during summer should be seriously a(footed wind-driven current by the wind and density-driven current is induced by the horizontal gradient of water density as well as tidal current.

키워드

참고문헌

  1. 한국환경과학회지 v.7 no.6 수영만의 생태계모델링에 의한 물질분포 김동선;조규대
  2. 한국환경과학회지 v.12 적조 다발 지역인 진동만의 해양 환경특성 김동선;조규대;박청길
  3. 부산수산대학교 대학원 박사학위논문 진해만 해역의 하계 부양양화 모델링. 김종구
  4. 부산수산대학교 대학원 박사학위논문 진해만의 빈산소수괴 형성에 관한 시뮬레이션. 최우정
  5. 한반도 조석 조화상수집(1) 한국해양연구소
  6. 제3차년도 최종보고서 부영양화 및 적조현상 규명에 관한 연구. 해양환경관리기술 환경부;과학기술처
  7. J. Mar. Biol. Ass. U.K. v.52 On the nutrition and metabolism of zooplankton VⅢ. The grazing of Biddulphia cell by Calame helgolandicus. Comer, E.D.S.;R.N. Head;C.C. Kilvington https://doi.org/10.1017/S0025315400040595
  8. J. Mar. Res. v.48 A nitrogen-based model of plankton dynamics in the oceanic mixed layer. Fasham, M.J.R.;H.W. Dukolw;S.M. Mckelvie https://doi.org/10.1357/002224090784984678
  9. Simulation model of Skeletonema costatum population dynamics in northem San Francisco Bay James, E.C.;T.C. Ralph
  10. Fish. Sci. Suppl. Il v.68 Numerical model reflecting effect of local wind in the inner bay. Kim, D.S.;K.D. Cho;C.I. Lee https://doi.org/10.1046/j.1444-2906.2002.00461.x
  11. Ecol. Modelling v.31 Population dynamics of 'red tide' organism in eutrophicated coastal waters-numerical experiment of phytoplankton bloom in the East Seto Inland Sea. Kishi, M;S. Ikeda https://doi.org/10.1016/0304-3800(86)90061-X
  12. A coastal marine ecosystem. Kremer, J.N.;s.W. Nixon
  13. J. Fish. Res. Bd. Can. v.21 Marine phytoplankton photosynthesis as a fumction of light intensity: a compsrison of method. McAllister, C.D.;N. Shah;J.D.H. Strickland https://doi.org/10.1139/f64-013
  14. J. Mar. Res. v.7 Note on the theory of the thermocline Munk;Anderson
  15. National Research Instituter for Pollution and Resources v.11 Numerical Simulation of Eutrophication Process in Castal Bay by Eco-hydrodynamic Model - 2- Coastal Bay Ecosystem Model. Nakata, K;K. Taguchi
  16. J. Acv. Mar. Tech. Conf. v.8 Ecosystem Model; its formulation and estimation method for unknwn rate parameter. Nakata K.
  17. J. Mar. Res. v.34 Tide-induced residual current, a 2-D nonlinear numerical tidal model. Tee, K.T.
  18. Mar. Biol. v.35 A spatial model of phytoplankton patchness. Wroblewski, J.;J. O'Brien
  19. Report of Ecological Measure for the Toxic Red Tide. Nansei National Fisheries Institute The growth characteristics of diatom. Yamaguchi, M.
  20. Contributions v.14 Yanagi, T.
  21. La mer. v.22 A numerical simulation of oil spreading on the sea surface. Yanagi, T.;Y. Okamoto
  22. J. Oceanogr. v.49 Seasonal variation of criculations in the East China Sea and the Yellow Sea. Yanagi, T.;S. Takahashi https://doi.org/10.1007/BF02237458
  23. J. Adv. Mar. Tec. Conf. v.8 Data assimilation for prediction of coastal sea condition. Yanagi, T.;T. Yamamoto
  24. J. Mar. Systems v.6 A numerical simulation of red tide formation. Yanagi, T.;T. Yamamoto;Y. Koizumi;T, Ikeda;M. Kamizono;H. tamori https://doi.org/10.1016/0924-7963(94)00027-9
  25. J. Mar. Systems v.13 Ecological modeling as a tool for coastal zone management of Dokai Bay, Japan. Yanagi, T.;K. Inoue;S. Mongani;M. Yamada https://doi.org/10.1016/S0924-7963(97)00006-7
  26. Ocean Sciences Research Coastal oceanography. Yanagi, T