The Study on the Seasonal Variation of Microbial Community in Kyeonggi Bay, Korea II. Nano-and Microzooplankton

경기만 수역에서 미세생물 군집의 계절적 변동 연구 II. 미소형 및 소형 동물플랑크톤

  • Published : 2003.05.01

Abstract

To investigate seasonal variation and structure of the microbial community in Kyeonggi Bay, abundance and carbon biomass of nano-and micrzooplankton were evaluated in relation to size fractionated chlorophyll-a concentration, through the monthly interval sampling from December 1997 to November 1998. Communities of nano-and microzooplankton were classified into 4 groups such as heterotrophic nanoflagellate(HNF), ciliates, heterotrophic dinoflagellates(HDF) and zooplankton nauplii. Abundance and carbon biomass of HNF ranged from 380 to 4,370 cells ml-1(average 1,340$\pm$130 cells ml-1) and from 0.63 to 12.4 $\mu\textrm{g}$C 1-1(average 4.35$\pm$0.58 $\mu\textrm{g}$C 1-1), respectively. Abundance and carbon biomass of ciliates ranged from 331 to 44,571 cells ml-1(average 3,526$\pm$544 cells ml-1) and from 1.3 to 119.7 $\mu\textrm{g}$C 1-1(average 13.7$\pm$3.0 $\mu\textrm{g}$C 1-1), respectively. Abundance and carbon biomass of HDF ranged from 88 to 48,461 cells 1-1(average 9,034$\pm$2,347 cells 1-1) and from 0.05 to 54.05 $\mu\textrm{g}$C 1-1(average 6.9$\pm$2.4 $\mu\textrm{g}$C 1-1), respectively. Abundance and carbon biomass of zooplankton nauplii ranged from 5 to 546 indiv. 1-1(average 83$\pm$15 indiv. 1-1) and from 0.17 to 43.2 $\mu\textrm{g}$C 1-1(average 6.3$\pm$1.2 $\mu\textrm{g}$C 1-1), respectively. Eash component of microbial biomass was not different from tidal cycle except tintinnids group. Depth integrated nano-and microzooplankton biomass ranged from 124 to 1,635 mgC m-2(average 585$\pm$110 mgC m-2) and was highest in March and May. The relative contribution of each component to the nano-and microzooplankton showed difference according to seasons. Community structure of nano-and microzooplankton was dominated by planktonic ciliate group. During the study period, carbon biomass of nano-and microzooplankton was strongly positively correlated with size fractionated chlorophylla-a. It implied that prey-predator relationship between microzooplankton and phytoplankton was important in the pelagic ecosystem of Kyeonggi Bay.

경기만 표영 생태계에서 미소형 및 소형 동물플랑크톤의 군집구조와 생태학적 역할을 조사하기 위하여, 1997년 12월부터 1998년 11월까지 한달 간격으로 미소형 및 소형 동물플랑크톤의 생물량 분포와 군집구조를 조사하였다. 본 조사에서 미소형 및 소형 동물플랑크톤은 2~200 $\mu\textrm{m}$ 크기의 종속영양 미세생물로 정의 하였으며, 종속영양 미소 편모류, 빈 섬모충류와 유종 섬모충류를 포함하는 섬모충류, 종속영양 와편모류와 동물플랑크톤 유생으로 구분하였다. 종속영양 미소 편모류의 현존량과 탄소량은 각각 330~4,370 cells m $l^{-1}$(평균: 1,340$\pm$130 cells m $l^{-1}$), 0.63~12.4 $\mu\textrm{g}$C 1$^{-1}$(평균: 4.35$\pm$0.58 $\mu\textrm{g}$C 1$^{-1}$)로 분포하였고, 부유 섬모충류의 현존량과 탄소량은 각각 338~44,571 cells 1$^{-1}$(평균: 3,526$\pm$544 cells 1$^{-1}$), 1.3~119.7 $\mu\textrm{g}$C 1$^{-1}$(평균: 13.7$\pm$3.0 $\mu\textrm{g}$C 1$^{-1}$)로 분포하였고, 종속영양 와편모류의 현존량과 탄소량은 각각 88~47,461 cells 1$^{-1}$(평균: 9,034$\pm$2,347 cells 1$^{-1}$), 0.04~54.05 $\mu\textrm{g}$C 1$^{-1}$(평균: 6.9$\pm$ 2.4 $\mu\textrm{g}$C 1$^{-1}$)로 분포하였고, 동물플랑크톤 유생의 현존량과 탄소량은 각각 5~546 indiv. 1$^{-1}$(평균: 83$\pm$15 indiv. 1$^{-1}$), 0.17~43.2$\mu\textrm{g}$C 1$^{-1}$(평균: 6.3$\pm$1.2$\mu\textrm{g}$C 1$^{-1}$)로 분포하였다. 조사기간 동안 미소형 및 소형 동물플랑크톤 각 군집의 생물량은 유종 섬모충류를 제외하고는 조석에 의한 차이를 보이지 않았다. 표층부터 저층까지 합산한 미소형 및 소형 동물플랑크톤의 탄소량은 124~l,635 mgC $m^{-}$$^2$/(평균: 585$\pm$110 mgC $m^{-2}$ )로 분포하였으며, 3월과 5월에 가장 높게 나타났다. 미소형 및 소형 동물플랑크톤 중에서 부유 섬모충류가 가장 우점하는 그룹으로 나타났으며, 전체 미소형 및 소형 동물플랑크톤의 평균 42.3%를 기여 하였다. 미소형 및 소형 동물플랑크톤에 대한 각각의 그룹들의 상대적인 기여도는 미소형 및 소형 동물플랑크톤의 군집구조와 계절에 따라 다르게 분포하는 것으로 나타났다. 경기만 표영 생태계서 미소형 및 소형 동물플랑크톤의 군집구조는 식물플랑크톤의 크기별 분포 양상과 유사한 경향을 보였으며, 이 결과는 미소형 및 소형 동물플랑크톤과 식물플랑크톤 간에 피식-포식자의 관계가 있음을 암시하며, 피식-포식의 관계가 미세생물 먹이망에서 중요한 조절 요인임을 보여준다.

Keywords

References

  1. 인하대학교 이학석사 학위 논문 한국연안의 미세생물 먹이망내에서 종속영양 외편모류의 역할에 관한 연구. 박남주
  2. 인하대학교 이학석사 학위논문 경기만에서 식물플랑크톤 군짐구조와 색소의 월간 변동. 송태윤
  3. 한국해양학회지 "바다" v.30 만경·동진강 염하구에서 섬모충류에 의한 박테리아 섭식에 관하여. 심재형;윤성화;조병철;이원호
  4. 인하대학교 이학박사 학위 논문 인천연안 미소형 및 소형 동물플랑크톤의 생태학적 연구. 양은진
  5. 한국해양학회지 "바다" v.8 경기만 수역에서 미세생물 군집의 계절적 변동 연구. Ⅰ. 박테리아와 종속영양 미소 편모류. 양은진;최중기;현정호
  6. 한국해양학회지 "바다" v.5 전남고흥해역의 유해성 적조의 발생연구. 3. 1997년도 종속영양성 와편모류와 험모충류의 시공간적 변화. 정해진;박종규;김재성;김성택;윤주이;김수경;박용민
  7. 한국해양학회지 '바다' v.7 전북 새만금 남쪽 해역의 유해성 적조 발생 연구. 2. 1999년도 여름-가을 종속영양성 와편모류와 섬모충류의 시간적 변화. 정해진;유영두;김재성
  8. 한국해양학회지 '바다' v.26 인천 연안 미세생물 먹이망 내에서 부유 운생동물의 포식율에 관한 연구. 최중기;김시균;노재훈;박경철
  9. Mar. Ecol. Prog. Ser. v.139 Microbial dynamics in coastal waters of east Antarctica: herbivory by heterotrophic dinoflagellates. Archer, S.D.;R.J.G. Leakey;P.H. Burkill;M.A. Sleigh https://doi.org/10.3354/meps139239
  10. Mar. Ecol. Prog. Ser. v.10 The ecological role of water-column microbes in the sea. Azam, F.;T. Fenchel; J.G. Field;J.S. Gray;L.A. Meyer-Reil;F. Thingstad https://doi.org/10.3354/meps010257
  11. Bull. Scerpps Instn. Oceanogr. v.17 The ecology of the plankton off La Jolla, California, in the period April through September, 1969. Pt. IV. Numerical abundance and estimated Biomass of microzo-oplancton. Beers, J.R.;G.L. Stewart
  12. Ecology of marine Protozoa. Feeding-relative ecology of marine protozoa. Capriulo, G.M.;G.M. Capriulo(Ed.)
  13. Limnol. Oceanogr. v.34 Protozoans in two southeastern blackwater rivers and their importance to trophic transfer. Carlough, L.A.;J.L. Meyer https://doi.org/10.4319/lo.1989.34.1.0163
  14. Hydrobiologia. v.306 Seasonal variation in abundance and size structure of phytoplankton in Baie des Chaleurs, southwestem gulf of St. Lawrence, in relation to physical oceanographic conditionsl Claerebiudt, M.;J. Coe;J. Bonardelli;J.H. Himmelman https://doi.org/10.1007/BF00016831
  15. Mar. Biol. v.111 Microphagous ciliates in mesohaline Chesapeake Bay waters: estimates of growth rates and consumption by copepods. Dolan, J.R. https://doi.org/10.1007/BF01319713
  16. Est. Coast. Shelf Sci. v.31 Seaxonal abundances of planktonic ciliates and microflagellates in mesohaline Chesapeake Bay waters. Dolan, J.R.;D.W. Coats
  17. Mar. Biol. v.32 Seaxonal studies on the rdlative inportance of different size fractions of phytoplankton in Narragansett Bay (USA) Durban, E.G.;R. W. Krawiec;T.J. Smayda https://doi.org/10.1007/BF00399206
  18. Baltic Marine Biologists Phytoplankton and cholrophyll recommendations for biological studies in the Baltic Sea. Edler, L.
  19. The Biology of Free-Kiving Phagotrophic protists. Ecology of Protozoa. Fenchel, T.
  20. Mar. Ecol. Prog. Ser. v.73 Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagic food web. Hansen, P.J. https://doi.org/10.3354/meps073253
  21. Mar, Biol. v.114 Prey size selection, feeding rates and growth dynavics of heterophic dinoflagellates with special special emphasis on Gyrodinium spirale. Hansen, P.J. https://doi.org/10.1007/BF00349535
  22. J. Plankton Res. v.19 The distribution of protozoaacross a trophic gradient, factors controlling their abundance and importance in the plankton food web. Hwang, S.J.;R.T. Heath https://doi.org/10.1093/plankt/19.4.491
  23. J. Phycol. v.22 Thecate heterotrophic dinoflagellates: Feeding behavior and mechanisms. Jacobson, D.M.;D.M. Anderson https://doi.org/10.1111/j.1529-8817.1986.tb00021.x
  24. J. Plankton Res. v.17 Planktonic ciliated protozoa their distribution and rdlationship to environmental variables in a marine coastal system. James, M.R.;J.A. Hall https://doi.org/10.1093/plankt/17.4.659
  25. Korea. Ms. thesis, Seoul Natl. Univ. An ecological study on Marine Tintinnids(Ciliated Protozoa; Order Tintinnida) in Cheonsu Bay Jeing, H.J.
  26. J. Korean Fish. Soc. v.30 Length and weight relationship of Acartia steueri(Copepoda: Calanoida) in Ilkwang Bay, Korea. Kang, H.K;Y.J. Kang
  27. Hydrobiologia v.159 Autofluorescence of marine planktonic Oligotrichina and other ciliates. Laval-Peuto, M.;F. Rassoulzadigan https://doi.org/10.1007/BF00007371
  28. Mar. Microb. Food Webs v.1 Mixotrophy in marine planktonic ciliates: ultrastructural study of Tontonia appendiculariformis (Cililphora, Oligotrichina) Laval-Peuto, M.;P. Salvano;P. Gayol;C. Gruet
  29. Mar. Biol. v.114 Planktonic ciliates in Southampton water: abundance, biomass, production, and role in pelagic carbon flow. Leakey, R.J.G.;P.H. Burkill;M.A. Sleih
  30. J. Korean Soc. Oceanogr. v.35 The roles of heterophic protists in the planktonic community of Kyeonggi Bay, Korea. Lee, W.J.;J.K. Choi
  31. Mar. Microb. Food Webs v.5 The trophic role of heterotrophic dinoflagellates in diverse marine envitonments. Lessard, E.J.
  32. Aquat. Microb. Ecol. v.16 Plankton community structure and carbon cycling on the western coast of Greenland during the stratifieh summer situation. Ⅱ. Heterotrophic dinoflagellates and ciliates. Levinsen, H.;T.G. Nielsen;B.W. Hansen https://doi.org/10.3354/ame016217
  33. Protozoa and their role in marine processes. Global production of heterotrophic marine planktonic ciliates Lynn D.H.;K.J.S. Montagnes;Reid PC(ed.);Turley CM(ed.);Burkill PH(ed.)
  34. Mar. Biol. v.99 The annual cycle of the heterotrophic planktonic ciliatis in the waters surrounding the Isles of Shoals, Gulf of Marine: an assessment of their trophic role. Montagnes, D.J.S.;D.H. Lynn;J.C. Roff;W.D. Taylor https://doi.org/10.1007/BF00644973
  35. Estuaries v.15 Seasonality and abundance of ichthy-oplankton in Great South Bay, New York. Monteleone, D.M. https://doi.org/10.2307/1352697
  36. Aquat. Microb. Ecol. v.10 Dynamics of size-fractionated phytoplankton and trophic pathways on the Scotian Shelf and at the shelf break, Northwest Atlantic. Mousseau, L.;L. Legendre;L. Fortier https://doi.org/10.3354/ame010149
  37. Mar. Ecol. Prog. Ser. v.125 Population dynamics of heterotrophic dimoflagellates durig a Gymnodinium mikimotoired tide in the Seto Inland Sea. Nakamura, Y.;S. suzuki;J. Hiromi https://doi.org/10.3354/meps125269
  38. Mar. Ecol. Prog. Ser. v.95 Structure of plankton communities in the Dogger Bank area (North Sea) during a stratified situation. Niesen, T.G.;B. Lokkegaard;K. Richardson;F.B. Pedersen;L. Hansen https://doi.org/10.3354/meps095115
  39. Limnol. Oceanegr. v.31 Am empirical analysis of zooplankton community size structure across lake trophic gradients. Pace, M.L. https://doi.org/10.4319/lo.1986.31.1.0045
  40. Limnol. Oceanegr. v.35 Planktonic community structure determines the fate of bacterial production in a temperate lake. Pace, M.L.;G.B. McManus;S.E.G. Findlay https://doi.org/10.4319/lo.1990.35.4.0795
  41. J. Kerean Soc. Oceanegr. v.32 Microzoo;oankton assemblage: their distribution, trophic role and rdlationship to the environmental variable. Park, G.S.;J.K. Choi
  42. Tev. Aquat. Sci. v.6 Ecology of pfanktonic diliates in marine food webs. Pierce, R.W.;J.T. Turner
  43. Limnol. Oceanegr. v.25 The use of DAPI for identifying and counting aquatic microflora. Porter, K.G.;Y.S. Feig https://doi.org/10.4319/lo.1980.25.5.0943
  44. Mar. Ecol. Prog. Ser. v.60 Metabolism of photosynthate in the chloroplast-retaining ciliate Laboea strobila. Putt, M. https://doi.org/10.3354/meps060271
  45. Limnol. Oceanegr. v.34 An experimentally determined carbon: volume ratio for marine "oligotrichous" ciliates from estuarine and coastal waters. Putt, M.;D.K. Stoecker https://doi.org/10.4319/lo.1989.34.6.1097
  46. Limnol. Oceanegr. v.26 Grazing rate of the tintinnid Stenosoella ventricosa (Clap.& Lachm.) Jorg. on the spectrum of the naturally occurring particulate matter form a Mediterranean neritic area. Rassoulzadegan, F.;M. Etienne https://doi.org/10.4319/lo.1981.26.2.0258
  47. Hydrobiologia v.159 Partitioning of the food ration marine ciliates between pico- and nanoplankton. Rassoulzaedgan, F.;M. Laval-Peuto;R.W. Sheldon https://doi.org/10.1007/BF00007369
  48. Oceanol. Acta v.6 Microzooplankton distribution in the Northern Adriatic Sea with emphasis on the relative abundance of ciliated protozoans. Revelante, N.;M. Gilmartin
  49. Neth. J. Sea Res. v.31 Size-cifferential control of phytoplankton and the structure of plankton communities Riegman, R.B.R. Kuipers;A.A.M. Noordeloos;H.J. Witte https://doi.org/10.1016/0077-7579(93)90026-O
  50. Limnol. Oceanegr. v.31 An experimintal investigation of a flagellate-cileate-copepod food chain with some observations relevant to the linear biomass hyprthesis. Sheldon, R.W.;P. Nival;F. Rassoulzadegan https://doi.org/10.4319/lo.1986.31.1.0184
  51. Mar. Ecol. Prog. Ser. v.55 Bacterivory by prlagic choreotrichous ciliates in coastal waters of the NW Mediterranean Sea. Sherr, E.B.;F. Rassoulzadegan;B.F. Hserr https://doi.org/10.3354/meps055235
  52. Microb. Ecol. v.28 Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Sherr, E.B.;B.F. Sherr https://doi.org/10.1007/BF00166812
  53. Mar. Microb. Food Webs v.1 Phagotrophic protozoa as for metazonas: a 'missing' trophic lind in marine pelagic food webs?. Sherr, E.B.;B.F. Sherr;G.A. Paffenhofer
  54. The Yellow Sea v.2 A study on the seasonal succession of copepod community in Kyeonggi Bay Shim, M.B.;J.K. Choi
  55. Limnol. Oceanogr. v.23 Pelagic ecosystem structure: heterotrophic components of the plankton and their relationghip to plankton size fractions. Sieburth, J.McN.;V. Smetacek;J. Lenz https://doi.org/10.4319/lo.1978.23.6.1256
  56. Aquat. Microb. Ecol. v.9 Significance of planktonic ciliated protozoa in the lower St. Lawrence Estuary: Comparison with bacterial, phytoplankton, and particulate organic carbon. Sime-Ngando, T;M.Gosselin. S. Roy;J.P. Chanut https://doi.org/10.3354/ame009243
  57. Mar. Biol. v.63 The annual cydle of protozooplankton in the Kiel Bight. Smetacek, V. https://doi.org/10.1007/BF00394657
  58. Mar. Biol. v.108 Respiration, photosynthesis and carbon metabolism in planktonic ciliates. Stoecker, D.K.;A,E. Michaels https://doi.org/10.1007/BF01313654
  59. Nature v.326 Large proportion of marine plandtonic cilates found to contain functional chloroplasts. Stoecker, D.K.;A.E. Michaels;L.H. Davis https://doi.org/10.1038/326790a0
  60. Limnol. Oceanogr. v.12 Estimation the organic carbon content of phytoplankton from cell volume or plasma volume. Strathmann, R.R. https://doi.org/10.4319/lo.1967.12.3.0411
  61. Mar. Ecol. Ser. v.130 Microplankton growth, grazing, and community composition in the northern Gulf of Mexico. Strom, S.L.;M.W. Strom https://doi.org/10.3354/meps130229
  62. Mar. Biol. v.132 Standing crops and vertical distribution of four of marine planktonic dioiates in relation to phytoplankton chlorophyll a. Suzuki, T.;A. Taniguchi https://doi.org/10.1007/s002270050404
  63. Mar. Ecol. Prog. Ser. v.146 Grazing by protists and seasonal changes in the size structure of protozllplankton and phytoplankton in a temperate nearshore environment (western Gulf of St. Lawrence, Canada). Tamigneaux, E.;M. Mingelbier;B. Klein;L. Legendre https://doi.org/10.3354/meps146231
  64. Ann. Inst. Oceanogr. Paris v.58 Symbioses in marine microplankton. Taylor, F.J.R.
  65. J. Oceanogr. v.52 Geographical and seasonal variations in abundance, biomass and estimated production rates of microzooplankton in the Inland Sea of Japan. Uye, S.I.;N. Nagano;H. Tamaki https://doi.org/10.1007/BF02239460
  66. Aquat. Microb. Ecol. v.12 Dynamics of ciliate abundance, biomass and community composition in an oligotrophic coastal environments(NW Mediterranean). Vaque, D.;H.A. Vlough;C.M. Duarte https://doi.org/10.3354/ame012071
  67. Limnol. Oceanogr. v.26 Measurement of prey uptake by marine planktonic ciliates fed plastidic and aplastidic nanoplankton. Verity, P.G.
  68. J. Plankton Res. v.6 Relationships between iorica volume, carbon, nitrogen and ATP content of tintinnids in Narragansett Bay. Verity, P.G.;C. Langdon https://doi.org/10.1093/plankt/6.5.859
  69. Limnol. Oceanogr. v.35 Response of the microbial loop to the phytoplankton bloom in a large prealpine lake. Weisse, T.;H. Muller;R.M. Pinto-Ceolho;A. Schweizer;D. Springman;G. Baldringer https://doi.org/10.4319/lo.1990.35.4.0781
  70. Est. Coast. Shelf Sci. v.51 Summertime ciliate and copepod nauplii distributions and micro-zooplankton herbivorous activity in the Laizhoru Bay, Bohai Sea, China. Zhang. W.;R. Wang https://doi.org/10.1006/ecss.2000.0644