4 2003. 4 BEFAsHER] A21E A4E

]

The Past, Present, and Future of Software Process Improvement

1. Introduction

During the past several years, organizations
have experienced a revolution in how they work
driven largely by the demands of their customers
and the desire to be the first in a market with a
new product. Software professionals have been
focusing attention on process improvements for
more than 20 years. Organizations that have
committed to and practiced software process
improvement (SPI) have reaped its rewards.” They
recognize that success in delivering a quality
product on time and on schedule is inextricably
linked to the experience of their organizations. By
using better software engineering methods, they
have found ways to capture, share, and improve
their knowledge and experience.

2. Software Process Basics

A process is a sequence of steps, actions, or
activities that members of an organization perform
to bring about a desired result or achieve a goal.
We at the Software Engineering Institute (SED)
also consider processes to be leverage points for an
organization’s sustained improvement.3

The SEI's Capability Maturity Models' use the
concept of process areas, which are the basic
building blocks of maturity models.” A process area
does not describe how an effective process is
executed (e.g., entrance and exit criteria, roles of
participants, resources). Instead, a process area
describes what the people who are using an

Carnegie Mellon University Stephen E. Cross

effective process do (their practices) and why they
do those things (their goals). Process areas
describe key aspects of such processes as
configuration management, requirements manage-
ment, product verification, systems integration, and
many others.)

3. Survey of Process Modeling
Approaches

The use of Capability Maturity Models is one
approach to software process improvement, but
there are numerous other models and assessment
methods. SPICE, Bootstrap, TickIT, and the
standards emanating from the International
Organization for Standardization (ISO) are major
examples.

SPICE(Software Process Improvement
and Capability Determination)

The SPICE Project originated in 1992 when the
standardization community began developing an
international standard for software process
assessment. The project resulted in the ISO 15604
standard, published in 1998. The methods and
models used to develop SPICE were, most notably,
the Capability Maturity Model; Bootstrap, devel-
oped by the Bootstrap Institute; Trillium, developed
by Bell Canada, Northern Telecom, and Bell
Northermn Research; and SPQA, developed for
internal use within Hewlett Packard. The SPICE
standard is now taught in software engineering
curricula. Hundreds of people have been trained in

The Past, Present, and Future of Software Process Improvement 5

SPICE training courses, and a certified SPICE
assessor program exists. There is also a Korean
version of SPICE, called "KSPICE."

Bootstrap

Bootstrap is a European software process
assessment and improvement method based on the
Capabhility Maturity Model, the ISO 9000 series of
standards, and the Software Engineering Standards
of the European Space Agency.7

While supporting the basic concepts of the
CMM, Bootstrap provides some more detailed
capahility profiles that organizations can use to
identify important areas for further improvement
that are not easily uncovered by other methods.
The method has been effective in helping
organizations to assess their current status of
software process quality and to initiate appropriate
improvement actions. An ISO 15504-compliant
version of Bootstrap has been developed by the
Bootstrap Institute.

TickIT®

The British Department of Industry and Trade
sponsored development of the TickIT scheme to
help address problems with software quality.
TickIT involves a system of accredited certification
bodies, a means of ensuring that auditors are
appropriately qualified, and the publication of the
TickIT Guide, which incorporates ISO 9000-3, the
ISO guide applicable to service organizations.

4. Industry Adoption

Among the numerous successful SPI methods
that have emerged over the past decade, the SEI
naturally has the most experience and insight into
the Capability Maturity Model, and how it has been
used in practice.

Since 1990, more than 5,000 organizations’ have
invested in CMM-based software process
improvement. These efforts have included
* in—depth assessment of current practices;

+ education and training in industry best practices
and transition techniques; and

« implementation of improvements consistent with
the organizations’ business objectives.

A Dbroad spectrum of organization types is
represented among the 5000 organizations,
including manufacturing, services, utilities, trade,
and administration. About 32% are non-U.S.
organizations. Also, CMM-based SPI is not limited
to large organizations. More than 47% employ 100
or fewer people. About 23% employ between 100
and 200. Some 29% employ more than 200.%

SEI data show that after organizations
implement CMM-based improvement, median
annual productivity improves by = 35%,
time—to-market is reduced by 19%, and
post-release defects drop by 39%. The median
annual cost per engineer of software process
improvement using the CMM for Software
(SW-CMM) is $1375. The savings to
organizations are about five times this amount.

Our experience with three corporations, Boeing,
Lockheed Martin, and Motorola, provides examples
of what has been accomplished with the
SW-CMM. At Boeing, the productivity of projects
increased by 62% as those parts of the organization
responsible for projects achieved Maturity Level 3.
Cycle times improved by 36%, planning was more
accurate, defects could be detected much earlier in
the process, and product quality increased. Both
customer and employee satisfaction also increased
as the organization moved up the capability ladder.

More specifically, at Boeing Space and
Transportation Systems, which has been assessed
at SW-CMM Level 5, defects are nearly all found
and fixed before testing begins. Defects escaping
into the field have been reduced from 119% to
practically 0%. Programs consistently reach
customer satisfaction and performance targets.
And, while peer reviews increase total project costs
by 4%, rework during testing is reduced by 31%.
The return on investment is 7.75 to 1.

At Lockheed Martin's Manassas unit. which

6 2003, 4. FRINFHA 21V A4F

achieved SW-CMM Ievel 5 in February 1999,
errors have declined and productivity has increased
by &80 percent. Performance measures have
mmproved and converged with higher maturity.
Lockheed Martin's Owego unit saw productivity
gains of 452.9% between 1982 and 2000, as
productivity improved with each maturity level
attained.

Motorola "has long been a champion of the
SEl's CMM as a vehicle for furthering software
process improvement,” in the words of two top
Motorola software executives.® As Motorola
improved its capability, the company’s cost, cycle
time, and defect density dropped sharply, while
quality and productivity improved dramatically.
"Achieving [the CMM Level 5] rating provides our
customers with the assurance that they are
receiving high—-performance solutions that improve
operations across the enterprise,” according to Leif
Soderberg, Motorola senior vice president.

5. Globalization

Today, nearly every organization everywhere in
the world that acquires or manufactures a product
or delivers a service must be concerned with
software quality. Indian software companies
provide an excellent example of how adoption of
software process improvement methods can help
organizations rapidly establish world-class
software capabilities.

Simply stated, Indian software companies and
software professionals have a quality mindset.
According to Satish Bangalore, managing director
of Phoenix Global Solutions India, "It's almost
shameful for them to admit they are a Level 2
company or that they didn't get ISO 9000
certification on the first or second attempt.”™ A
major Indian software development firm, Infosys
Technologies Ltd., has embraced CMM, ISO, Six
Sigma, and the Malcolm Baldrige National Quality
Award framework. The company measures and
manages such things as in—process defects, rework

costs, defects delivered to customers, cost
overruns, schedule slippage, and estimation
accuracy.

There are now an estimated 150,000
information-technology professionals in India-
60,000 software engineers, 15000 graduates in
computer science and related disciplines, and 75,000
from other engineering disciplines. For the past
decade, the Indian software industry has been
influenced by standard approaches to project
management, such as ISO 9000 and the SW-CMM.
Indian software firms embraced quantitative
process management and many have now achieved
Level 3 or 4 in formal CMM-based assessments.
Software exports have doubled over the past five
years. Many North American firms have expanded
operations, and others, such as American Express
and Oracle, have opened new operations.

Top Indian software firms are no longer
satisfied with just writing code, but are increasing
their capabilities in architecture and whole systems
design, systems integration, and systems
migration.”

Software development costs in India are
currently about one-third those in the United
States, but that advantage is expected to disappear
in three to five years. Then, Indian firms will
compete on quality alone-and they appear to be
fully capable of doing so. Estimates call for annual
revenue for India’s software industry to grow from
$5.7 billion in 2001 to $87 billion in 2008.

6. Evolving Standards

Some new standards are evolving as a result of
the work of the international standards community.
In 1995, ISO/IEC 12207, Information Technology-
Software Life Cycle Processes was published. This
standard describes the processes for acquiring,
developing, supplying, operating, and maintaining
software. In 1998, the U.S. implementation of this
standard was published as IEEE/EIA 12207, and
includes additional material based on US. best

The Past, Present, and Future of Software Process Improvement 7

practices. IEEE/EIA 12207 provides an architecture
of the full software life cycle, including product
conception, implementation, maintenance, and soft-
ware retirement, and specifies the processes,
activities, and tasks to be accomplished during the
life cycle.

CMM-based software process improvements
can give organizations a leg up in meeting the
requirements of 12207. Most organizations
operating at CMM Level 3 or higher are very close
to being compliant with 12207 simply by achieving
Level 3. Organizations that have not yet used the
CMM approach to SPI can use it as a method for
achieving 12207 compliance because the CMM
provides an incremental, five-level approach to
improvement, and step-by-step guidance.

ISO/IEC 15504, an emerging international
standard on software process assessment, resulted
from the SPICE Project of the 1990s.” It defines a
number of software engineering processes, such as
software requirements analysis, and a scale for
measuring an organization's capabilities. As with
the CMM, a basic premise of the measurement
scale is that higher process capability is associated
with better project performance.

7. Related Trends

Two significant trends have emerged during the
past few years. First there has been a proliferation
of process models for software engineering,
systems engineering, and other disciplines. The
SEl in collaboration with industry and the U.S.
government, has recently published an integrated
framework called CMM Integration (CMMI) in
order to Tharmonize models, training, and
assessment approaches. Second, there has been a
strong desire to accelerate the time it takes to
achieve higher maturity levels under a CMM and
to apply CMM concepts to the individual engineer
and small teams. The SEI has developed the
Personal Software Process (PSP) and the Team
Software Process (TSP) to meet this need In

addition, while not discussed in this paper, we have
recently seen the rise of the "light process”
movement as typified by Extreme Prograrnming18
(XP). Many in the "Internet development” and
rapid-application-development communities view
the use of models such as the SW-CMM as a
"heavy” and burdensome approach to process
improvernent. As discussed by Paulk” and
Leishman® XP and similar approaches are best
practices applied to code development by small
teams and are therefore worth consideration and
compatible with the SW-CMM.

CMM Integration21

Capability Maturity Models have proliferated
along with the growth of software-intensive
systems. These trends have resulted in a blurring
of the line between software and systems
development. It can be helpful to retrace the
growth of CMMSs, to understand why an
integration of these models is now desirable.

In 1991, the Software Engineering Institute
released the Capability Maturity Model for
Software (SW-CMM) consisting of key practices
organized into a "roadmap” that guides
organizations toward improving their software
development and maintenance capability. The
SW-CMM approach was based on principles of
managing product quality that have existed for the
past 60 vears. In the 1930s, Walter Shewhart
advanced the principles of statistical quality
control, which were further developed and
successfully demonstrated in the work of W.
Edwards Deming, Joseph Juran, and Philip Crosby.

The SEI eventually became involved in helping
to develop additional CMM approaches in other
disciplines. The models that emerged from these
efforts include the Systems Engineering Capability
Maturity Model (SE-CMM) and the Integrated
Product Development Capability Maturity Model
(IPD-CMM). As is the case with the SW-CMM and
SE-CMM, the IPD-CMM addresses organizational
and project management processes, but with a

8 2003 4 FHE=HEZRA A21A A4

focus on ensuring the timely collaboration of all
appropriate disciplines in the development and
maintenance of a product or service.

"The development of multiple Capability Maturity
Models for other disciplines was generally greeted
positively. Process improvement expanded to affect
more disciplines and helped organizations to better
develop and maintain their products and services.
However, this expansion also created challenges.

Ideally, various Capability Maturity Models
should work together harmoniously for the benefit
of organizations wishing to apply more than one
model to improve product quality and productivity.
However, especially with respect to the Capability
Maturity Models for software engineering, systems
engineering, and IPD, managers have found that
overlaps in content and differences in architecture
and guidance across these models made
improvement across the organization difficult and
costly. Training, assessments, and improvement
activities often had to be repeated for each specific
discipline, with little guidance on how to integrate
such activities across these disciplines.
Organizations needed a way to easily integrate
their CMM-based improvement activities. The
models themselves needed to be integrated.

To respond to the challenges and opportunities
created by the demand for better integration of
CMM models, training, and assessment methods,
the Office of the U.S. Under Secretary of Defense
for Acquisition and Technology initiated the CMM
Integration project, which is co-sponsored by the
National Defense Industrial Association. Experts
from a variety of backgrounds and organizations
were asked to establish a framework that could
accommodate current and future models.

Since February 1998, industry, government, and
the SEI have developed the following CMMI
models!

- CMMI for Systems Engineering and Software

Engineering(CMMI-SE/SW)

«CMMI for Systems Engineering, Software

Engineering, and Integrated Product and Process

Development(CMMI-SE/SW/IPPD)

*CMMI for Systems Engineering, Software
Engineering, Integrated Product and Process
Development, and Supplier Sourcing(CMMI-SE/
SW/IPPD/SS)

« CMMI for Software Engineering(CMMI-SW)
CMMI products comply with the 1SO 15504

standard for software process assessment, and

preserve the improvement work achieved by
organizations that used CMMI source models.

The CMMI product suite includes CMMI
models, a framework, training materials, and
assessment methods. The CMMI framework states
the rules and concepts that ensure CMMI products
are consistent with each other-that is, that they are
capable of being integrated.

Worldwide adoption of CMMI is progressing
rapidly. As of this writing, nearly 7,500 people have
taken the Introduction to CMMI course—a number
that grows by 400 people each month-and more
than 450 have taken the Intermediate CMMI
course. As of October 2002, 40 CMMI appraisals
had been conducted; about 55%6 of those were at
non-U.S. organizations. A substantial number of
people have been trained by the SEI to offer CMMI
training and appraisals: as of February 2003, the
SEI has licensed 50 people to teach CMMI courses
and 86 people to offer CMMI appraisal services.

In one example of a large organization’s adop-
tion of CMMI, Lockheed Martin issued a new
corporate policy stating that it will apply the highest
standards of engineering excellence to all projects.
As part of the policy, it is requiring each of its
business units to attain, by January 2005, at least
a CMMI Maturity Level 3 against the CMMI-
SE/SW/IPPD/SS model. After an initial appraisal,
business units are strongly encouraged to move up
to the next-higher CMMI level about every two
years, until they reach Maturity Level 4 or 5.

Organizations that are interested in complying
with the latest standard for software engineering
and product quality from ISO and the International
Electrotechnical Commission(ISO/IEC 9126) will

The Past, Present, and Future of Software Process Improvement 9

find CMMI helpful because it is both a process and
product quality model. The product quality
attributes of functionality, reliability, security,
usabhility, efficiency, maintainability, and portability
are addressed in the ISO/IEC standard and
supported by CMMI. Additional SEI work, such as
architecture tradeoff analysis, provides technical
approaches for achieving assured levels of product
quality during design, as opposed to the
state—of—practice approach of determining product
quality during testing.

Personal Software Process(PSP) and
Team Software Process(TSP)

Although the Capability Maturity Model
provides a powerful improvement framework, its
focus is necessarily on "what” organizations should
do and not "how” they should do it. This is a direct
result of the CMM's original motivation to support
the Department of Defense acquisition community.
Developers of the CMMs knew management
should set goals for their software work but they
also knew that there were many ways to
accomplish those goals. Above all, they knew that
no one was smart enough to define how to manage
all software organizations. Thus, the CMM focused
on goals and provided only generalized examples of
the practices the goals implied.

As organizations used the CMM, many had
trouble applying the CMM principles. In small
groups, for example, it is not generally possible to
have dedicated process specialists, so every
engineer must participate at least part time in
process improvement. There was a need for much
greater process detail, and greater understanding
and emphasis on the real practices of development
engineers.

Improvement requires change, and changing the
behavior of software engineers is a nontrivial
problem’ engineers only believe new methods work
after they use them and see the results, but they
will not use the methods until they believe they

work. To convince software engineers of the value
of better methods, the Personal Software Process
(PSP) requires that they leave their day-to-day
environment and go through a rigorous training
course.

At the US. company Advanced Information
Services(AIS)® team members were trained in PSP
in the middle of a project. Before PSP training they
had difficulty producing estimates; in one case, the
original estimate was four weeks, but the job took
20 weeks. Their average estimating error was 394
percent. After PSP training, these same engineers’
estimating error was —~10.6 percent. The same type
of results occurred in the area of test defects.
Before PSP training, the engineers had a
substantial number of acceptance test defects and
their products were uniformly late. After PSP
training, the next product was nearly on schedule,
and it had only one acceptance test defect.

We have found, however, that PSP does not go
far enough. Even when everyone on a team of
engineers is PSP trained and properly supported,
they still must figure out how to combine their
personal processes into an overall team process.
We have found this to be a problem even at higher
CMM levels. This is why the SEI has developed
the Team Software Process(TSP).”

TSP extends and refines the CMM and PSP
methods to guide engineers in their work on
development and maintenance teams. It shows
them how to build self-directed teams and how to
perform as effective team members. It also shows
management how to guide and support these teams
and how to maintain an environment that fosters
excellent team performance.

The principal benefit of TSP is that it shows
engineers how to produce quality products for
planned costs and on aggressive schedules. It does
this by showing engineers how to manage their
work and by making them owners of their plans
and processes.

While TSP is still in development, the early results
are encouraging. One team at Embry-Riddle

10 2008. 4 FBFAE3R] A21d Al4%

Aeronautical University removed more than 99
percent of development defects before system test
entry. A team at Hill Air Force Base reduced
testing time by eight times and more than doubled
its productivity. The team’s customer has since
found no defects in using the product. ABB Ltd.
used PSP/TSP methods and found only .44 defects
per thousand lines of code, a 10-times reduction
compared to a previous project completed without
using the TSP process.

8. Future Trends

Industry leaders are aggressively improving
their software engineering practices to drastically
reduce the amount of defects introduced during
design and coding. In the future, “software product
quality” will be less about defects and more about
how well a product achieves desired levels of
functionality, reliability, security, usability,
efficiency, maintainability, and portability. The
latest developments in software process
improvement, such as CMMI and TSP, the SEI's
work in architecture tradeoff analysis, and the
ISO/IEC 9126 standard, will accelerate the trend
toward this expanded definition of quality.

There are three other future trends that I
consider significant, one that is now quite clear,
and two upon which I can only speculate. The first
has to do with software reuse. The second and
third have to do with technology to support the use
of software engineering processes and to support
virtual organizations.

Software Reuse

Organizations that have instituted processes and
as a result know they produce high-quality code
have an extreme competitive advantage when they
reuse that code. The SEI has developed the
Framework for Product Line Practice? which is
based on the best practices of organizations that
systematically reuse software and associated
knowledge and experience (eg., architecture,

requirements, and plans) across a family of sirmilar
products. Significant productivity, cycle time, and
quality improvements have been noted. More
details are in the recent book Software Product
Lines: Practices and Patterns® In addition, the
IEEE is introducing the IEEE 1517 Software Reuse
Standard® to provide a guide for best practices in
software reuse.

Software Process Technology

During the past five years, several companies
have provided computer-based lbraries of
predefined processes. But there is also an exciting
and fruitful area of research aimed at helping
organizations discover, represent, and use effective
and efficient processes. For example, in Osterweil’s
research,?’ a process programming language and
interpreter are being developed to coordinate the
efforts of people, computers, and software tools to
support key software development activities, such
as collaborative design and software testing and
analysis. As Osterweil points out, “This work also
provides a platform for research on how to perform
rigorous evaluation, comparison, analysis, evolution
and improvement of software development
processes themselves.”

Virtual Organizations

The last trend is currently a necessity in the
global economy. Software organizations are now
"24x7" (i.e., they work 24 hours a day, 7 days a
week). It is not uncommon for a development
organization in the United States to be working in
partnership with development organizations in
Europe and Korea where work is done
continuously and collaboratively during the
daylight hours in each part of the world. This
presents two interesting questions for
organizations that have in the past reaped the
benefits of process improvement. First, how can
process improvement under a model such as CMM
be effectively supported in different cultures? The

The Past, Present, and Future of Software Process Improvement 11

second question is equally intriguing. How can
several organizations, each committed to process
improvement, come together to work on a project
for a period of time and rapidly integrate their
processes and cultures in order to perform
effectively on the project? While it is premature to
attempt an answer to these questions, relevant
research is being conducted at the Institute for
Software Research International” and the Software
Industry Center” at Carnegie Mellon University.

9. Summary

Software process improvement has been one of
the most important ways to improve the quality of
software and the effectiveness and efficiency of
software development organizations. During the
past 10 years, more than 5000 organizations have
adopted the SW-CMM and many other
organizations have adopted similar process models.
[EEE and international standards are evolving to
encourage and support continued process
improvement. The Software Engineering Institute
1s committed to broadening the benefits of software
process improvement to the entire engineering
organization through a new model called CMM
Integration and to enable faster improvement
through the Personal Software Process and the
Team Software Process. The SEI is also
committed to working with its colleagues in Korea
so that industry can reap the benefits from this
important and exciting work.

References

[1] Much of this paper is based on my keynote
presentation to the 2001 Korea Software
Engineering Process Group Conference:
Cross, Stephen E., "The Value of Software
Process Improvement,” keynote speech, 2001
Korea Software Engineering Process Group
(SEPG) Conference, Seoul, Korea, 20-21
September 2001. Proceedings published by
System Integration Technology Research

Institute (SITRI), Seoul, Korea, 2001.

[2] McConnell, S, "The Power of Process,”
Computer, May 1998 pp. 100-102.

[3] Software Engineering Institute. CMMISM-SE/
SW, V10 Capability Maturity Model(r)-
Integrated for Systerns Engineering/Software
Engineering, Version 1.1, Continuous Represen-
tation (CMU/SEI2002-TRO01). Pittsburgh, PA:
Camegie Mellon University, Software Engineering
Institute. 2000.

[4] Capability Maturity Model, CMM, and CMMI
are registered in the United States Patent and
Trademark Office by Caregie Mellon
University. CMM Integration, Personal
Software Process, PSP, Team Software
Process, and TSP are service marks of
Carnegie Mellon University.

[5] Shrum, S., "Spotlight: CMMI Model Repre-
sentations,” SEI Interactive, December
1999. See http://interactive.sei.cmu.edu/
Features/1999/December/Spotlight/Spotlight.
dec99.pdf.

[6]1 For more about KSPICE see http//www.
kspice.co.kr/html/main.asp.

[7] Stienen, H, Engelmann, F. Lebsanft, E,
"BOOTSTRAP: Five Years of Assessment
Experience; Software Technology and
Engineering Practice,” Proceedings of the
Eighth IEEE International Workshop on
Incorporating Computer-Aided Software En-
gineering, 1997, pp. 371-379.

[8] Morrison, H., "Standards and Certification,”
Layman’s Guide to Software Quality, IEEE
Colloquium, 1993.

[9] Sheard, S, "The Frameworks Quagmire”
CrossTalk, September 1997. See http//www.
stsc.hill.af.mil.

[10] Software Engineering Institute, Benefits of
CMM-Based Software Process Improvement:
Initial Results(CMU/SEI-94-TR-013). See
http://www.sei.cmu.edu/publications/docume
nts/94.reports/94.tr.013.html.

{11} Yamamura and Wigle, Boeing Space and

12 2003. 4. AEIE3]A] #21H A4E

Transportation Systems, CrossTalk, August
1997.

[12] Software Engineering Process Group Confer-
ence, 1999

[13] Diaz, M, and Sligo, J, "How Software
Process Improvement Helped Motorola,”
[EEE Software, October 1997.

[14] Anthes, G., and Vijayan, J., "Lessons from
India Inc.,” Computerworld, April 2, 2001

[15] Embar, C. "The State of Software
Development in India,” CrossTalk, August
2001. See http://www.stsc.hill.af.mil.

[16) Ferguson, J, and Sheard, S, (Software
Productivity Consortium, "Leveraging Your
CMM Efforts for IEEE/EIA 12207 IEEE
Software, September/October 1998.

[171 El Emam, K, and Kirk, A., "Validating the
ISO/IEC 15504 Measure of Software
Requirements Analysis Process Capability,”
[EEE Transactions on Software Engineering,
Volume 26, Issue 6, June 2000.

[18] Beck, K, "Embracing Change with Extreme
Programming,” IEEE Computer, October
1990,

[19] Paulk, M., "Extreme Programming from a
CMM Perspective,” Proceedings of the XP
Universe Conference, July 2001. See
‘httpi//www.xpuniverse.com

[20] Leishman, T., "Extreme Methodologies for an
Extreme World,” CrossTalk, June 2001. See
http://www.stsc.hill.af.mil.

[21] Ahern, D., Clouse, A, and Tumer, R,
CMMISM Distilled: A Practical Introduction
to Integrated Process
Addison-Wesley, 2001.

Improvement,

[22] Ferguson, P., Humphrey, W., Khajenoori, S,
Macke, S., and Matvya, A., "Introducing the
Personal Software Process: Three Industry
Case Studies,” IEEE Computer, Vol. 30, No. 5,
May 1997, pp. 24-31.

[23] Humphrey, W. Introduction to the Team
Software Process, Addison-Wesley, 2001.

[24] See http://www.sel.cmu.edu/plp/framework.
html

[25] Clements, P. and Northrop, L., Software
Product Lines: Practices and Patterns,
Addison-Wesley, 2002.

[26] McCLure, C. Software Reuse: A Standards-
Based Guide, IEEE Computer Society, 2001.

[27] See http://taser.cs.umass.edu/process.html.

[28] See http://spoke.compose.cs.cmu.edu/isti/.

[29] See http:/www.heinz.cmu.edu/swic/.

Stephen E. Cross

Since 199, Stephen E. Cross has been
the Director and Chief Executive

Officer of the Software Engineering
Institute (SED) at Camegie Mellon
University.

He joined the university in 193 as a
member of the research faculty
and Director of the Information
Technology Center.

Curvently, he holds a joint appointment

as a Principal Research

Scientist in the School of Computer Science.

He received his PhD. from the University of Ilinois at
Urbana -Charrpaign, his Master of Science in Electrical Engineering
from the Air Force Institute of Technology, and his Bachelor of
Science in Hectrical Engineering from the University of Cincinnati.
He is a graduate of the US. Air Force (USAF) Test Pilot School
(Rlight Test Engineer Course), the USAF Air War College, and the
National Defense University.

