The Design of $GF(2^m)$ Multiplier using Multiplexer and AOP

Multiplexer와AOP를 적응한 $GF(2^m)$ 상의 승산기 설계

  • 변기영 (가톨릭대학교 정보통신전자공학부) ;
  • 황종학 (국민체육진흥공단 체육과학연구원) ;
  • 김흥수 (인하대학교 전자공학과)
  • Published : 2003.05.01

Abstract

This study focuses on the hardware implementation of fast and low-complexity multiplier over GF(2$^{m}$ ). Finite field multiplication can be realized in two steps: polynomial multiplication and modular reduction using the irreducible polynomial and we will treat both operation, separately. Polynomial multiplicative operation in this Paper is based on the Permestzi's algorithm, and irreducible polynomial is defined AOP. The realization of the proposed GF(2$^{m}$ ) multipleker-based multiplier scheme is compared to existing multiplier designs in terms of circuit complexity and operation delay time. Proposed multiplier obtained have low circuit complexity and delay time, and the interconnections of the circuit are regular, well-suited for VLSI realization.

본 논문에서는 고속의 연산동작과 낮은 회로 복잡도를 갖는 새로운 GF(2/sup m/)상의 승산기를 제안한다. 유한체 연산은 다항식 승산과 기약다항식을 적용한 모듈러 연산에 의해 전개되며, 본 논문에서는 이 두 과정을 분리하여 다루었다. 다항식 승산연산은 Permestzi의 기법을 토대로 전개하였고 기약다항식은 AOP로 하였다. 멀티플렉서를 사용하여 GF(2/sup m/)상의 승산회로를 구성하였고, 회로 복잡도와 지연시간을 타 논문과 비교하였다. 제안된 승산기는 낮은 회로 복잡도와 지연시간을 보이며, 회로의 구성이 정규성을 가지므로 VLSI 구현에 적합하다.

Keywords

References

  1. S.Lin, Error Control Coding, Prentice-Hall, Inc. New Jersey, 1983
  2. 이만영, BCH부호와 Reed-Solomon부호, 민음사, 1990
  3. B.A.Laws and C.K.Rushford, 'A Cellular-Array Multiplier for GF$(2^m)$ IEEE Trans. Computer, vol. C-20, no. 12, pp. 1573-1578, Dec. 1971 https://doi.org/10.1109/T-C.1971.223173
  4. C.S.Yeh, I.S.Reed, and T.K.Trung, 'Systolic Multipliers for Finite Field GF$(2^m)$,' IEEE Trans. Computer, vol. C-33, pp. 357-360, April 1984 https://doi.org/10.1109/TC.1984.1676441
  5. J.Omura and J.Massey, 'Computational Method and Apparatus for Finite Fields,' U.S. Patent no. 4,587,627, May 1986
  6. C.C.Wang, T.K.Trung, H.M.Shao, L.J.Deutsch, J.K. Omura, and I.S.Reed, 'VLSI Architecture for Computing Multiplications and Inverses in GF$(2^m)$,' IEEE Trans. Comp., vol.C-34, pp. 709-717, Aug. 1985 https://doi.org/10.1109/TC.1985.1676616
  7. B.Sunar, and C.K.Koc, 'Mastrovito Multiplier for All Trinomials,' IEEE Trans. Computers, vol. 48, no. 5, pp. 522-527, May 1999 https://doi.org/10.1109/12.769434
  8. A.Haibutogullari, and C.K.Koc, 'Mastrovito Multiplier for General Irreducible Polynomials,' IEEE Trans. Computers, vol. 49, no. 5, pp. 503-518, May 2000 https://doi.org/10.1109/12.859542
  9. T.Zhang, and K.K.Parhi, 'Systematic Design of Original and Modified Mastrovito Multipliers for General Irreducible Polynomials,' IEEE Trans. Computers, vol. 50, no. 7, pp. 734-748, July 2001 https://doi.org/10.1109/12.936239
  10. T.ltoh, and S.Tsujii, 'Structure of Parallel Multipliers for a Class of Fields GF$(2^m)$,' Information and Computation, vol. 83, pp. 21-40, 1989 https://doi.org/10.1016/0890-5401(89)90045-X
  11. C.K.Koc, and B.Sunar, 'Low-Complexity Bit Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields,' IEEE Trans. Computer, vol. 47, no.3, pp. 353-283. March 1998 https://doi.org/10.1109/12.660172
  12. C.Y.Lee, E.H.Lu, and J.Y.Lee, 'Bit-Parallel Systolic Multipliers for GF$(2^m)$ Fields Defined by All-One and Equally Spaced Polynomials,' IEEE Trans. Computers, vol. m, No.5, pp. 385-393, May 2001 https://doi.org/10.1109/12.926154
  13. B. Parhami, Computer Arithmetic- Algorithms and Hardware Designs, Oxford University Press, Inc., 2000
  14. K.Z.Pekmestzi, 'Multiplexer-Based Array Multipliers,' IEEE Trans. Computer, vol. 48, no.1, pp. 15-23. Jan. 1999 https://doi.org/10.1109/12.743408
  15. R.J.Baker, H.W.Li, and D.E.Boyce, CMOS-Circuit Design, Layout, and Simulation, IEEE Press, 1998
  16. S.M.Kang, and Y.Leblebici, CMOS Digital Integrated Circuits-Analysis and Design, McGraw-Hill, 1999